
Releases and Versioning

Info

OpenCGA v1.3.0 allows to define internal data and of different Catalog data modelsreleases versions

Overview
OpenCGA v1.2.0 added support for creating internal data , a new field was included in releases release
the data models () to indicate in which the data was , note that see GitHub issue #616 release created rele

 is implemented as a number and it is an immutable field. OpenCGA 1.3.0 adds a new feature that ase
allows tracking different of the data models when they are updated (), at versions see GitHub issue #684
the moment has been added to and data models.versioning Sample, Individual Family

These two features together constitute an important milestone for Catalog data management. anRelease
d allow users to organise data such as and in different releases and keep track versioning files samples
of all changes. Also, users can now execute more powerful queries such as:

query data from one or several releases
query all the versions (whole history) of an entry*
query a specific version of an entry*
look for historic data from older releases*

* The only supported entries at the moment are Sample, Individual and Family.

Releases
Many research projects need to create deliverable or snapshot of the data from time to time that will
contain everything that has been done so far up to a point. Since version 1.2.0, we added a new field rele

 to the data models () to track when the data such as or were ase see GitHub issue #616 files samples
created. This will also allow OpenCGA to specific releases and to them in another export import
OpenCGA installation, see below.

Release is defined in this means that different can have a different release number, project, projects
notice that all from the same share the same numeric counter. studies, files, samples, ... project release
Therefore, have a counter field showing the current release of the data being ingested at projects release
the moment.

How it works

Every time a user creates a new the project will be created with the set to 1. Only the project, release
owner of the project is authorised to increase the and therefore to freeze current working release. release
This can be done either using a RESTful web service () or Project /{version}/projects/{project}/increlease
the command-line

Entries stored in such as will be assigned the current number Project Study, Sample, File, ... release
from the project in which they belong. This number is , even for the owner of the release immutable
project, as it reflects when the new data was added.

Querying data by release

Now that a new field is present in all entries, it is very easy to query data from different releases. release
All the REST web services include now a new query parameter. Some example queries search release
can be found below:

query samples created in release 2: .../samples/search? =2release
query samples created before release 4: .../samples/search? <4release

Note: by default the examples above return the last version of each document in each release, as you
will see in the next section, each data model is associated with the in which it Versioning, version release
was updated.

Versioning

Table of Contents:

Overview
Releases

How it works
Querying data by release

Versioning
How it works
Querying data by version

Export and import
Export data to a different
database

Export
Import

Remember Catalog Data Models:

https://github.com/opencb/opencga/issues/616
https://github.com/opencb/opencga/issues/684
https://github.com/opencb/opencga/issues/616

Keeping track of the different versions of the metadata as it is updated is very useful, specially when
doing clinical analysis reports that are based on some specific or Because clinical data samples families.
may change overtime, being able to easily fetch old data supporting an old report would be crucial.
OpenCGA v1.3.0 () added version support for and data see GitHub issue #684 Sample, Individual Family
models. At the moment, we are only supporting versioning in these entries because they will most
probably contain all the clinical information. However, versioning might be extended to other entries in
future releases.

How it works

A new numeric field called has been added to and . This new field is an version Sample, Individual Family
 and it can be increased with every update only if the user decides to create a new version of autonumeric

the data. Therefore, the REST web service of and have a new query update Sample, Individual Family
parameter called , this parameter is a boolean that indicates whether the version of the entry incVersion
being updated should be increased, if a document is created for storing new version containing true new
the changes and the incremented version. If then the update is applied in the document and false same v

 remains equals, by default is false. ersion incVersion

On the other hand, Individual and Family web services have another query parameter called update upda
and respectively. Bearing in mind the data models teSampleVersion updateIndividualVersion

hierarchy, these new Boolean parameters are used to update the version of the references. For example,
we can think of an Individual in the database containing two samples. However, the individual is pointing
to old versions of those two samples. If we want the Individual to be updated and point to the latest
Sample versions, we would set the boolean field to true.updateSampleVersion

These parameters could be used with any possible combination or all at the same time. For example, it
would be allowed to call to the web service passing some fields to be updated and individual/update
setting and to true. In that case, a new version of the individual will be updateSampleVersion incVersion
stored in the database containing the changes the user demanded and with the sample references
updated to point to their latest versions.

Querying data by version

Sample, Individual and Family web services now contain two new query parameters, a numeric info
called and a Boolean called . If the user does not pass any of these parameters, the version allVersions i

 web service will work as expected, returning the latest version of the data being fetched only. If nfo allVer
 is set to true, it will return the whole history of the entry, that is, a list containing all the different sions

versions of the entry being requested. Furthermore, the user is also allowed to request a concrete
version of the entry using the parameter.version

Sample, Individual and Family web services have two query parameters called and search snapshot rel
 to control how to query data. Though they might seem pretty much the same, the connotation is ease

quite different and the results obtained may be really different:

If the parameter is used, the query will return the latest version of the entries that were release c
 in that release number (or range).reated

If the parameter is used, the query will return the latest version of the entries in that snapshot
release. This can be easily understood with an example. Let's imagine we are currently in the
release 3 and our sample have 3 versions (1 different version per release), and we specify snap

2, the sample information we would be fetching would correspond to the version 2 of the shot=
data and not the very latest one.

If we don't specify the parameter we will always get the latest version available in the database snapshot
that matches the criteria specified. Obviously, and parameters can be used together. If release snapshot
we do this we could do queries such as Give me the latest snapshot available in release 2 of the samples

for instance.that were created in release 1

Export and import

Export data to a different database

The release concept can be normally associated to the concept of deliverables. OpenCGA can be used
by a bunch of users that will ingest new data and will be updating it over time to satisfy some kind of
deadline. When the time is due, the owner of the project will need to increase the so new release counter
ingested data is associated to a new number to satisfy the requirements for the next deadline. release

Once a is finished, that data could be made available for other kind of users that will only needs release
access as is (read-only). One of the things OpenCGA offers is the option to export old releases of data to
a database so other researchers can access that data without interfering the work that might read-only
still be in progress in the source database with the next release.

Export

https://github.com/opencb/opencga/issues/684

1.

2.

The export option will export up to a specified release number. This means, that if the complete projects
is 4 in the project and the user wants to export up to release 3, all the studies, samples, release counter

files... created during releases 1, 2 and 3 and the project itself, will be exported.

When exporting a project, it will never export permissions or groups associated to the studies. This
information will be lost in the exported file(s). It will only export the data itself and the cross-references.

The command line would look like:

Export OpenCGA data

opencga-admin.sh catalog export --project {project} --output-dir /tmp
/catalog_export --release 5 -p

Import

Importing data from other OpenCGA installation is much more trickier than just exporting the data. For
this reason, some restrictions need to be satisfied to guarantee that everything will work properly.

The very first time something is going to be imported to other database, the database should
NOT contain any project, study... However, users are allowed.
Imports can be incremental

The command line to import data from a different installation looks like:

Import data to new OpenCGA installation

opencga-admin.sh catalog import --directory /tmp/catalog_export --owner
{owner} -p

	Releases and Versioning

