
How to use Genome Browser
Getting Genome Browser
To get Jsorolla you can add to your package.json dependency:

Using JavaScript version
First we should define our genome browser. This will contain the general structure of the genome
browser and the karyotyope and chromosome panels. To draw these panels, genome browser will use
the database "Cellbase" to which also it should be indicated which species we are using. You can see all
the species available on Cellbase .here

The target parameter indicates the id of the component wherer the genome browser will be created, in
the example there is a "div" called "application". Autorender to draw the only one. If this variable is false,
it will be necessary to call the render function of the genome browser. Another parameter of configuration
is if we want that the genome browser can be resizable or on the contrary, once defined the size this will
be fixed.

Example: Define Genome-Browser

let species = {id:"hsapiens", scientificName:"Homo sapiens", assembly:
{name:"GRCh37"}};
let region = new Region({chromosome: "13", start: 32996311, end:
33000856}); //initial region
let genomeBrowser = new GenomeBrowser({
 client: cellbaseClient,
 cellBaseHost: CELLBASE_HOST,
 cellBaseVersion: CELLBASE_VERSION,
 target: 'application',
 width: document.querySelector('#application').getBoundingClientRect().
width,
 region: region,
 species: species,
 autoRender: true,
 resizable: true,
 karyotypePanelConfig: {
 collapsed: false,
 collapsible: true
 },
 chromosomePanelConfig: {
 collapsed: false,
 collapsible: true
 },
 navigationBarConfig: {
 componentsConfig: {
 }
 },
 handlers: {
 'region:change': function(e) {
 console.log(e)
 }
 }
});

The karyotype and chromosome panels can be passed the configuration if the default is closed or not, or
if it is possible to close it or it will always be open.

Line 22-24 are optional, and are useful if you want to add some custom settings to the navigation bar.

Finally we can add to the genome-browser handlers as shown in the example.

At this moment your genome browser would be started and it would look like this:

Table of Contents:

Getting Genome Browser
Using JavaScript version

Overview Track
Sequence Track
Gene Track
Variant Track
Aligment Track
Custom Track

Using Polymer web component

https://github.com/opencb/cellbase/wiki/species-list

This would be basic form of the genome browser, to enrich it we can define a series of tracks or zones of
visualization with different features as explained below.

Overview Track

The particularity of this track is that it has a different zoom to the rest. This smaller zoom (more remote),
serves to have an overview of what is in that area soight while in the rest of tracks you see in more detail
the zone.

We will define a FeatureTrack to which we will pass the renderer, the adapter and other parameters of
configuration of the track like the title, the minimun size where it changes histogram
(minHistogramRegionSize), the maximun size where the names of the components display
(maxLabelRegionSize) or height.

FeatureRenderer is the renderer in charge of painting a boz for each feature. Adding the gene type
(FEATURE_TYPES.gene) knows how to draw the color fo each feature and the tag among other things.

The data will be collected with a CellBaseAdapter, indicating that we want to collect the genes and
exclude the transcripts since being a distant zoom if we painted them woild be difficult to visualize.

Example: Overview Track

let gene = new FeatureTrack({
 title: 'Gene overview',
 minHistogramRegionSize: 20000000,
 maxLabelRegionSize: 10000000,
 height: 80,
 renderer: new FeatureRenderer(FEATURE_TYPES.gene),
 dataAdapter: new CellBaseAdapter(cellbaseClient, "genomic", "region",
"gene", {
 exclude: 'transcripts,chunkIds'
 }, {
 chunkSize: 100000
 })
});
genomeBrowser.addOverviewTrack(gene);

Sequence Track

The sequence track shows that nucleotide matches in the position we are looking for.

This track accpets in this definition the title, the height of the track, the maximum size of nucletotics in
which the track continues painting(visibleRegionSize), the renderer and the CellBaseAdapter. We
recommend that the value of the visibleRegion not be very high because the sequence would be clearly
seen when painting thousand of letters.

Example:Sequence Track

let tracks = [];
this.sequence = new FeatureTrack({
 title: 'Sequence',
 height: 20,
 visibleRegionSize: 200,
 renderer: new SequenceRenderer(),
 dataAdapter: new CellBaseAdapter(cellbaseClient, "genomic", "region",
"sequence", {}, { chunkSize: 100})
});
tracks.push(this.sequence);
genomeBrowser.addTrack(tracks);

To add this track to the genome browser, we will define an array of tracks that we will add all the track we
want to add (except overviewtrack), and later add this to the genome browser as it does on line 10.

Gene Track

Adding a gene track is similar to making a sequence track since we will also define it and add to the track
array which we then add to the genomeBrowser.

Gene track shows the genes and transcripts that are in the region visualized, for this we consult the
cellbase database to which we pass which species we are consulting.

Example: Gene Track

this.gene = new GeneTrack({
 title: 'Gene',
 minHistogramRegionSize: 20000000,
 maxLabelRegionSize: 10000000,
 minTranscriptRegionSize: 200000,
 height: 120,
 cellbase: {
 "host": CELLBASE_HOST,
 "version": CELLBASE_VERSION,
 "species": "hsapiens"
 }
 });
tracks.push(this.gene);

If we want to change the renderer or defaunt adapter of the gene track we can indicate it with the
parameters renderer and adapter respectively.

Example: Gene Track Advanced Mode

this.gene = new GeneTrack({
 title: 'Gene',
 minHistogramRegionSize: 20000000,
 maxLabelRegionSize: 10000000,
 minTranscriptRegionSize: 200000,
 height: 120,
 cellbase: {
 "host": CELLBASE_HOST,
 "version": CELLBASE_VERSION,
 "species": "hsapiens"
 }
 renderer: new GeneRenderer({
 handlers: {
 'feature:click': function(e) {
 console.log(e)
 }
 }
 })
 dataAdapter: new CellBaseAdapter(cellbaseClient, "genomic",
"region", "gene", {
 exclude: 'transcripts.tfbs,transcripts.xrefs,transcripts.
exons.sequence'
 }, {
 chunkSize: 100000
 })
 });
tracks.push(this.gene);

Variant Track

The variant track has two operating modes: individual or family. If we pass name of one of ours will
understand that these samples correspond to a family and will activate the family mode, otherwise the
individual mode will be activated.

Individual mode:

In the individual mode each variant is and individual and so is shown. In the example as they are variants
of type snp, we pass the configuration of the painting that we want to the renderer. This configuration is
defined in the config file of the source code, inside the genome-browser.js then the library is downloaded
with npm.

Example: Individual Variation

let variant = new VariantTrack({
 title: "Variant",
 closable: true,
 minHistogramRegionSize: 20000000,
 maxLabelRegionSize: 10000000,
 minTranscriptRegionSize: 200000,
 visibleRegionSize: 100000000,
 height: 300,
 opencga: {
 client: opencgaClient,
 studies: "platinum:illumina_platinum"
 }
 });
tracks.push(variant);

Family mode:

When we define the samples in the variant track the family mode is activated. This shows in the left side
the name of the sample and in horizontal we can see the variants of each sample.

Example: Family Variant

let variant = new VariantTrack({
 title: "Variant for family",
 closable: true,
 minHistogramRegionSize: 20000000,
 maxLabelRegionSize: 10000000,
 minTranscriptRegionSize: 200000,
 visibleRegionSize: 100000000,
 height: 300,
 opencga: {
 client: opencgaClient,
 studies: "reference_grch37:1kG_phase3",
 samples: ["HG00096", "HG00097", "HG00099"]
 }
});
tracks.push(variant);

When you use the opencga parameter, the genome browser itself understands that the adapter we want
to user is the OpencgaAdapter. The renderer to use is the one that comes by default defined in the
variant track. This renderer is the FeatureRender using the FeatureType.Variant configuration. This
FeatuareType, there in config archive in the code or genome-browser.js when you getting jsorolla using
npm.

The code equivalent to the above but using the adapter definition and renderer would be as follows:

Example: Individual Variant using adapater and renderer definition

let variant = new VariantTrack({
 title: "Variant",
 closable: true,
 minHistogramRegionSize: 20000000,
 maxLabelRegionSize: 10000000,
 minTranscriptRegionSize: 200000,
 visibleRegionSize: 100000000,
 height: 300,
 renderer: new FeatureRenderer(FEATURE_TYPES.variant),
 dataAdapter: new OpencgaAdapter(opencgaClient, "analysis
/variant", undefined, "query",
 {
 studies: "platinum:illumina_platinum",
// exclude: "studies.files,studies.stats,annotation"
//Exclude for samples mode
 exclude: "studies,annotation" //Exclude for individual
variation mode
 }, {
 chunkSize: 100000
 })
 });
tracks.push(variant);

It is important for the developer to understand that the genome browser always uses a track, an adapter,
and a renderer even though it does not look the same in its definition. If the developer wants to change
the renderer or the adapter using the default tracks should include the adapter or renderer they want in
the definition of the track.

Aligment Track

The aligment track is made up at the top of the coverage and at he bottom of the bams reads.

Example: Aligment Track

 let alignment = new AlignmentTrack({
 title: "Alignment",
 closable: true,
 minHistogramRegionSize: 5000,
 maxLabelRegionSize: 3000,
 visibleRegionSize: 100000000,
 height: 300,
 renderer: new AlignmentRenderer(FEATURE_TYPES.bam),
 dataAdapter: new OpencgaAdapter(opencgaClient, "analysis
/alignment", undefined, "query",
 {
 fileId: fileId,
 study: study
 })
 });

 tracks.push(alignment);

When you use the adapter of Opencga to visualize the bams you must pass the name of the files to him
by the parameter fileId.

Custom Track

You may want to collect data from another database but you don't want to implement a custom adapter
for yourself. The solution to this problem is to use the adapter template.

In the following example, instead we create a variant track using a template adapter instead of our
adapter for the cellbase database.

Example: Template Adaptor

let t = new FeatureTrack({
 title: 'Variant',
 closable: true,
 minHistogramRegionSize: 20000000,
 maxLabelRegionSize: 10000000,
 minTranscriptRegionSize: 200000,
 histogramColor: '#92de47',
 height: 100,
 renderer: new FeatureRenderer(FEATURE_TYPES.snp),
 dataAdapter: new FeatureTemplateAdapter({
 multiRegions: false,
 histogramMultiRegions: false,
 uriTemplate:"http://ws.babelomics.org/cellbase/webservices/rest/v4
/hsapiens/genomic/region/13:32990000-32999999/snp? exclude=
{exclude}",
 templateVariables: {
 exclude: 'annotation.populationFrequencies,annotation.
additionalAttributes,transcriptVariations,xrefs,samples'
 },
 species: genomeBrowser.species,
 cacheConfig: {
 chunkSize: 100000
 },
 parse: function(response) {
 var chunks = [];
 for(var i = 0; i< response.response.length; i++){
 var res = response.response[i].result;
 chunks.push(res);
 }
 return chunks;
 }
 })
});
tracks.push(t);

Param Type Description

multiReg
ions

boolean Indicates if large regions will make a single call to the server or several.

histogra
mMultiR
egions

boolean Indicates whether large regions will make a single call to the server or multiple
calls when the display zone is in histogram mode.

uriTempl
ate

string Uri of the server to which calls will be made. The value of the query params will
be indicated by a "{variable}". This value will be declared in templateVariables.

template
Variables

object Object that includes the value of each query param of the uriTemplate. As query
param will be defined as: in the key, the name of the query params that we have
put in the uriTemplate and as value, the value to be replaced in the uriTemplate.

species object Specie object, This parameter is optional and servers to add name of the species
in the cache. It will be necessary if your viewer has the option to change species.

cacheCo
nfig

object Object to define the configuration of the cache whose main element is the
chunkSize.

parse function Since the render expects an array of chunks to paint, you may need to parse the
result of the response. Defining this function will parse the result when making
calls and before passing the result to the renderer.

Using Polymer web component
To facilitate the use of the Genome Browser component, a WebComponent has been created that you
can import into your html page.
In this tutorial you will learn how use this component for visualizate differents tracks.

In first time, you must import the component in your page.

import

<link rel="import" href="jsorolla/dist/core/webcomponent/genome-browser.
html">

Subsequently, we will declare the genome component browser in our html code. For this we must know
the list of parameters that the component accepts.

Here is a list of parameters that the component accepts and uses:

Param Type Description

cellbase-
client

Object Client for use Cellbase. Necessary for: Gene track (using cellbase adapter,
default).

opencga-
client

Object Client for use opecngaDB. Necessary for: Varriant Track and Aligment Track
(using opencga adapter, default).

project Object To use opencga webservices, you will need to know which
project the data to display.

study Object To use the opencga webservices, this will need to know in which study within a
project, are the data to be visualized.

region Object Region where the genome-maps will initially be positioned.

species Object Species to draw. Default: homo sapiens.

width Number Component width.

active Boolean Enables or disables the component. If it is disabled the
component will not be displayed.

Default: false.

settings Object This parameter sets other settings of the genome maps that
the user wants to pass.

Finally, declare the component. In this case, we only defined the GeneTrack and Sequence track:

 <genome-browser cellbase-client="{{cellbaseClient}}" region="{{region}}"
tracks="{{tracks}}" active="true">
 </genome-browser>

In the javascript part we will give value to the variables:

 CELLBASE_HOST = "bioinfo.hpc.cam.ac.uk/cellbase";
 CELLBASE_VERSION = "v4";

 let cellBaseClientConfig = new CellBaseClientConfig
(CELLBASE_HOST, CELLBASE_VERSION);
 this.cellbaseClient = new CellBaseClient(cellBaseClientConfig);

 this.region = new Region({chromosome: "11", start:
68177378, end: 68177510});
 this.tracks ={sequence: {type: "sequence"}, gene: {type:
"gene"}};

We have created a cellbase client that will connecto to the Host " ". If we bioinfo.hpc.cam.ac.uk/Cellbase
do not want to change the installation of Cellbase, it is not necessary that we define the host and the
version, but we initialize a client. With the parameter "region", we ask that the display is at "11:68177378-
68177510". It's possible to not see these positions in the display where the painted region is shown, but
you well see a window frame containing the region. This is because the genome browser adjusts the
display to optimize the cache.

Finally, the last param is "tracks", in this case we want see the track "sequence" and "gene". We can
define other types of tracks as follows:

Individual Variant Track (for example SNP): {trackname: {type: "variant", config: {} }}.
Family Variant Track: {trackname: {type:"variant", config:{samples:"sample1","sample2"}}}.
Aligment Track:{trackname:{type:"alignment", config:{files:"bam1", "bam2"}}}.

http://bioinfo.hpc.cam.ac.uk/Cellbase

	How to use Genome Browser

