
Using the Python REST client
Python client pyCGA
pyCGA is the Python client library for OpenCGA RESTful Web Services, all the web services are
accessible through this client, and it offers a quick way to query OpenCGA projects programmatically
from custom scripts. In the same way than in tutorial, we will focus on Using RESTful Web Services URL

. In order to make it easy to follow we will use the those end points more interesting for HGVA users
same examples used in .Using RESTful Web Services URL

Installing pyCGA

The Python client library is distributed with the rest of the . The OpenCGA code can be OpenCGA code
cloned in your machine by executing in your terminal. Checkout the latest code (release-1.1.0 branch).
You can easily install pyCGA using tool: pip

How To Install pyCGA

git clone https://github.com/opencb/opencga.git
git checkout v1.3.6
cd opencga/opencga-client/src/main/python
[sudo] pip install . [--upgrade]

Configuring pyCGA for HGVA

Configuration parameters can be passed as a file, file or a JSON YAML Python Dictionary:

Configuration File - JSON format

{
 "version": "v1",
 "rest": {
 "hosts": [
 "bioinfo.hpc.cam.ac.uk/hgva"
]
 }
}

Configuration File - YAML format

version: v1
rest:
 hosts:
 - bioinfo.hpc.cam.ac.uk/hgva

Table of Contents:

Python client pyCGA
Installing pyCGA
Configuring pyCGA for HGVA

Examples
Getting information about
genomic variants
Getting information about
projects
Getting information about
studies
Getting information about
samples
Getting information about
cohorts

http://docs.opencb.org/display/hgva/Using+RESTful+Web+Services+URL
http://docs.opencb.org/display/hgva/Using+RESTful+Web+Services+URL
https://github.com/opencb/opencga

Configuration Dictionary Python

configuration = {
 'version': 'v1',
 'rest': {
 'hosts': [
 'bioinfo.hpc.cam.ac.uk/hgva'
]
 }
}

Load the configuration will be the first step, to use the python client. We will use the class, ConfigClient
passing the name of the path of the configuration file or the dictionary with the configuration. After that
the instance created will be passed to the Client.

Initialising the client

from pyCGA.opencgarestclients import OpenCGAClient

configuration = '/path/to/configuration_file.json'
configuration = '/path/to/configuration_file.yaml'
configuration = {
 'version': 'v1',
 'rest': {
 'hosts': [
 'bioinfo.hpc.cam.ac.uk/hgva'
]
 }
}

This will skip the login and allow the user query hgva as Anonymous
oc = OpenCGAClient(configuration=configuration, session_id=' ')
oc.session_id = None
oc._create_clients()

Once the library is imported and configured, you can proceed to run the examples below.

Examples

Getting information about genomic variants

Getting information about genomic variants

Get TTN variants from the Genome of the Netherlands study, which is
framed within the reference_grch37 project ('limit=3' limit the number of
results to 3)
If the response status is 200 (OK), the response will be a dictionary
with the responses, this dictionary is equivalent to the json response
obtained through the Web Services.
for page in oc.analysis_variant.query(data={'gene':'TTN',
'studies':'reference_grch37:GONL'}, limit=3, pag_size=100):
 for result in page.get():
 print result

Getting information about projects

Getting information about genomic variants

Getting all metadata for the reference_grch37 project
result = oc.projects.info('reference_grch37').get('reference_grch37')

Getting all studies and their metadata for the cancer_grch37 project
result = oc.projects.studies('reference_grch37').get('reference_grch37')

Getting information about studies

Getting information about genomic variants

Getting all metadata for all available studies
responses = oc.studies.search(data={})

Getting summary data for study 1kG_phase3 which is framed within
project reference_grch37
responses = oc.studies.summary('reference_grch37:1kG_phase3').get
('reference_grch37:1kG_phase3')

Getting all metadata for study GONL which is framed within the project
reference_grch37
responses = oc.studies.info('reference_grch37:GONL').get('reference_grch37:
GONL')

Getting all samples metadata for study 1kG_phase3 which is framed within
project reference_grch3
responses = oc.studies.samples('reference_grch37:1kG_phase3').get
('reference_grch37:1kG_phase3')

Getting information about samples

Getting information about genomic variants

Get all metadata for sample HG00096 of the 1kG_phase3 study which is
framed within the reference_grch37 project
responses =oc.samples.info('HG00096', study='reference_grch37:1kG_phase3').
get('HG00096')

Getting information about cohorts

Getting information about genomic variants

Get all samples metadata for cohort GBR from study 1kG_phase3 which is
framed within project reference_grch37
responses = oc.cohorts.samples('GBR', study='reference_grch37:1kG_phase3').
get('GBR')

	Using the Python REST client

