
Using an external authentication origin
Configuration
In order to be able to authenticate using other authentication origin credentials, it will be necessary
defining some parameter present in the file. In this section, it will be possible defining configuration.yml
as many authentication origins as needed.

authenticationOrigins:
- id: ldap1
 type: LDAP # At the moment, only LDAP type is supported
 host: ldap://localhost:9000
 options:
 usersSearch: dc=ge,dc=co,dc=uk
 groupsSearch: ou=general,ou=groups,dc=ge,dc=co,dc=uk
- id: ldap2
 type: LDAP # At the moment, only LDAP type is supported
 host: ldap://localhost:8000
 options:
 usersSearch: dc=ge,dc=co,dc=uk
 groupsSearch: ou=general,ou=groups,dc=ge,dc=co,dc=uk

In the below example, we would be defining two different LDAP authentication origins (defined in the type
variable). The first one receives the id and the host is in whereas the second ldap1 ldap://localhost:9000,
one has the id with a different host.ldap2

The and fields are of real importance. In this string fields admins will have to usersSearch groupsSearch
define the naming context to search for users and groups respectively in that authentication origin.

Supported Operations
Once OpenCGA is installed with the proper configuration file, the next step would be adding users from
these authenticated origins. To do this, two command lines have been added to admin opencga-admin.sh
script.

Import users

The command line needs the authentication origin id, which in this case would or and ldap1 ldap2,
accepts several optional parameters. Admins might opt to provide a list of comma separated users using -

and/or a group already defined in their authentication origin containing a list of users that will be u, --user
directly imported into OpenCGA.

Admins can also define additionally how this new OpenCGA user account will be, the expiration date (--
) or the type (-). There are basically two different types of accounts: guest and full. expiration-date -type

The main difference between full and guest is that users with a account are able to create their own full
projects and studies. However, accounts cannot create anything in OpenCGA unless they have guest
been granted permissions to manipulate user's projects and studies. other

Example: Let's imagine that one PI has created a different project/study for every different research the
PI is doing. The PI will be able to import other users from an external authentication origin, but most
probably, the type of the account the PI will assign to every new user will be . This way, the PI will guest
be sure other users cannot create anything in OpenCGA. However, the PI will give permissions
subsequently to those users. Maybe some users will be able to create new things inside the study, others
will only be able to read some information...

The last thing worth explaining is the parameters and . These parameters will --study-group -s, --study
allow the admin to create one group in one study of OpenCGA containing the list of users imported all in
one command line.

Table of Contents:

Configuration
Supported Operations

Import users
Sync groups

Sync groups

The aim of this command line is the synchronization of users from one (or more) of the groups from the
external authentication origin to one (or more) of the groups defined in one study of OpenCGA.

Basically, this command line can perform two different actions depending on what is already stored in
OpenCGA:

Sync and keep track of one group

This method will fetch all the users corresponding to one group defined in the external authentication
origin, import the users not previously registered into OpenCGA, create one group in one study (if it did
not exist already) and assign those users to the group in OpenCGA (removing other users not belonging
to the group in the authentication origin if the group already existed). Besides, additional information will
be stored in the group defined in OpenCGA after running this command line, that will let OpenCGA know
that that group is with one particular group from one external authentication origin.synced

To do so, the mandatory parameters will be:

--auth-origin to define the authentication origin id used to groups from.sync
-s, --study to define the study in OpenCGA that has the group to be synced.
--from to specify the group from the authentication origin to fetch the current list of users from.
--to to specify the group in OpenCGA whose users have to be synced.

Accounts for new user imports can also be defined using the parameters and -- as --expiration-date type
explained in the above section.

The command line will complain by default if the admin is trying to with one existing group in sync
OpenCGA. This can be easily overrided using the parameter --force.

Sync all ' ' groups from one studysynced

New users might have been added to one group in the external authentication origin and some others
might have been removed. However, although it will be implemented, OpenCGA does not resynchronise
users from the external authentication origin with the internal group yet. For this reason, it is needed a
command line that will check for all the groups that have been imported from external authentication
origins and will the users based on the current members of the external groups.resync

To do so, the mandatory parameters will be:

--auth-origin to define the authentication origin id used to groups from.sync
-s, --study to define the study in OpenCGA that has the group to be synced.
--sync-all to indicate that all the groups belonging to the study that have been imported from any
group of the authentication origin have to be resynced.

This action might require new users to be imported as well. For this reason, the account parameters
explained in the sections above might be still necessary.

	Using an external authentication origin

