
Using the Java REST client
The Java client provides an API to the whole . We will here only focus on OpenCGA RESTful layer those

. In order to understand how to create queries methods which are of most interest for HGVA users
using these methods, it would be interesting to have a look at the section before.Datasets and Studies

Getting the Java client code
As previously said, the Java client code is distributed together with the rest of the . OpenCGA code

The OpenCGA code can be cloned in your machine by executing in your terminal:

$ git clone https://github.com/opencb/opencga.git
$ cd opencga
$ git checkout release-1.1.0

Alternatively, you can download files with the code for the latest tags/releases of OpenCGA from:tar.gz

https://github.com/opencb/opencga/releases

Once you have downloaded the code, follow the instructions at the section of the OpenCGA How to Build
repository:

https://github.com/opencb/opencga

That will generate the containing the Java client library. If you are using as a build and .jar Maven
dependency manager you shall find the client file at:.jar

$ ll opencga/build/libs/opencga-client-1.1.0.jar
-rw-r--r-- 1 user user 40K Jan 4 17:34 opencga/build/libs/opencga-client-
1.1.0.jar
$ ll ~/.m2/repository/org/opencb/opencga/opencga-client/1.1.0/opencga-
client-1.1.0.jar
-rw-r--r-- 1 user user 40K Jan 4 17:34 /home/user/.m2/repository/org
/opencb/opencga/opencga-client/1.1.0/opencga-client-1.1.0.jar

Initializing the Java client
The requires a object to be passed as a parameter. This OpenCGAClient constructor ClientConfiguration
ClientConfiguration object will contain basic connection details, namely the URL that points to HGVA web
services. The best way to obtain a ClientConfiguration object is to create a configuration file that will .yml
later be passed to the static method of the ClientConfiguration class to generate a new load
ClientConfiguration object. A template is provided within the OpenCGA code. If client-configuration.yml
you have cloned the OpenCGA code, you will find the file at:client-configuration.yml

$ ll opencga/opencga-client/src/main/resources/client-configuration.yml
-rw-r--r-- 1 user user 272 Sep 8 14:10 opencga/opencga-client/src/main
/resources/client-configuration.yml

This file can easily be edited to set the attribute to the HGVA web services URL (resthost http://bioinfo.
):hpc.cam.ac.uk/hgva/webservices/

Table of Contents:

Getting the Java client code
Initializing the Java client

Getting information about
genomic variants
Getting information about
projects
Getting information about
studies
Getting information about
samples
Getting information about
cohorts

http://docs.opencb.org/display/opencga/RESTful+Web+Services?src=contextnavpagetreemode
http://docs.opencb.org/display/hgva/Datasets+and+Studies
https://github.com/opencb/opencga
https://github.com/opencb/opencga/releases
https://github.com/opencb/opencga
https://github.com/opencb/opencga/blob/release-1.0.0-rc3/opencga-client/src/main/java/org/opencb/opencga/client/rest/OpenCGAClient.java#L45
https://github.com/opencb/opencga/blob/release-1.0.0-rc3/opencga-client/src/main/java/org/opencb/opencga/client/config/ClientConfiguration.java
http://bioinfo.hpc.cam.ac.uk/hgva/webservices/
http://bioinfo.hpc.cam.ac.uk/hgva/webservices/

client-configuration.yml

number of seconds that session remain open
sessionDuration: 12000

REST client configuration options
rest:
 host: "http://bioinfo.hpc.cam.ac.uk/hgva"
 batchQuerySize: 200
 timeout: 10000
 defaultLimit: 2000

gRPC configuration options
grpc:
 host: "localhost:9091"

Once the file is ready, you can just create an OpenCGAClient object by running:client-configuration.yml

import org.opencb.opencga.client.rest.OpenCGAClient;
import org.opencb.opencga.client.config.ClientConfiguration;
...
...
...
OpenCGAClient openCGAClient;
ClientConfiguration clientConfiguration;

// Load client configuration from client-configuration.yml file
clientConfiguration = ClientConfiguration.load(new FileInputStream(Paths.
get("/path/to/client-configuration.yml")));
// Create OpenCGA client
openCGAClient = new OpenCGAClient(clientConfiguration);

The OpenCGAClient will, in turn, be able to generate different data client types that will provide methods
for accessing the different data types. The most relevant data client types for HGVA users will be the
VariantClient, ProjectClient, StudyClient, CohortClient and SampleClient, that you can create by simply
doing:

VariantClient variantClient = openCGAClient.getVariantClient();
ProjectClient projectClient = openCGAClient.getProjectClient();
StudyClient studyClient = openCGAClient.getStudyClient();
SampleClient sampleClient = openCGAClient.getSampleClient();

Through these clients you will be able to access information about variants, projects, studies and
samples. Please, have a look at the examples provided below.

Getting information about genomic variants

Getting variant data from a given study. You can use the method within the VariantClient class:query

public class VariantClient extends AbstractParentClient {
...
 public QueryResponse<Variant> query(ObjectMap params) throws
CatalogException, IOException
...
}

The parameter can be provided as a QueryOptions object, which works as a Map by providing a params
 method that enables to add pairs (filter, value) that form the actual query. Available filters and put

possible values for them are those described at the for the corresponding web Swagger specification
service. For example, get TTN variants from the Genome of the Netherlands study, which is framed
within the project. We will also limit the number of returned results to 3:reference_grch37

http://bioinfodev.hpc.cam.ac.uk/hgva-1.0/webservices/#!/Analysis_-_Variant/getVariants

import org.opencb.commons.datastore.core.QueryOptions;
...
...
...
QueryOptions queryOptions = new QueryOptions();
queryOptions.put("gene", "TTN");
queryOptions.put("studies", "GONL");
queryOptions.put("limit", 3);
openCGAClient.getVariantClient().query(queryOptions);

Getting information about projects

Getting all metadata from a particular project. You can use the method that the ProjectClient class get
inherits from the CatalogClient :

public abstract class CatalogClient<T, A> extends AbstractParentClient {
...
 public QueryResponse<T> get(String id, QueryOptions options) throws
IOException
...
}

Inputs:

id: String containing the project alias or project name. You can get available project alias at the D
 section.atasets and Studies

options: must be set to null in this case, since no filtering options are available for this purpose.

For example, getting all metadata for the project:reference_grch37

openCGAClient.getProjectClient().get("reference_grch37", null);

Getting all metadata from all studies associated to a particular project. You can use the getStudies
method of the ProjectClient:

public class ProjectClient extends CatalogClient<Project, Project> {
...
 public QueryResponse<Study> getStudies(String projectId, QueryOptions
options) throws CatalogException, IOException
...
}

Inputs:

projectId: String containing the project alias or project name. You can get available project alias
at the section.Datasets and Studies
options: QueryOptions object which will contain the pairs (filter, value) that form the query.
QueryOptions objects work as a Map object, by providing a method that enables to add the put
(filter, value) pairs. Available filters and possible values for them are those described at the Swa

 for the corresponding web service.gger specification

For example, getting all studies and their metadata for the project:cancer_grch37

import org.opencb.commons.datastore.core.QueryOptions;
...
...
...
QueryOptions queryOptions = new QueryOptions();
openCGAClient.getProjectClient().getStudies("cancer_grch37", queryOptions);

Getting information about studies

http://docs.opencb.org/display/hgva/Datasets+and+Studies
http://docs.opencb.org/display/hgva/Datasets+and+Studies
http://docs.opencb.org/display/hgva/Datasets+and+Studies
http://bioinfodev.hpc.cam.ac.uk/hgva-1.0/webservices/
http://bioinfodev.hpc.cam.ac.uk/hgva-1.0/webservices/

Get all available studies and their metadata. Please note, of special interest will be here the field al
 which contains the study identifier to be used as an input whenever a study must be passed ias

You can use the method of the StudyClient class:as a parameter. search

public class StudyClient extends CatalogClient<Study, StudyAclEntry> {
...
 public QueryResponse<Study> search(Query query, QueryOptions options)
throws IOException
...
}

Inputs:

query: Query object which will contain the pairs (filter, value) that form the query. Query objects
work as a Map object, by providing a method that enables to add the (filter, value) put
pairs. Available filters and possible values for them are those described at the Swagger

 for the corresponding web service.specification
options: not necessary, can be set to an empty QueryOptions.

For example, getting all metadata for all available studies:

import org.opencb.commons.datastore.core.Query;
import org.opencb.commons.datastore.core.QueryOptions;
...
...
...
Query query = new Query();
QueryOptions queryOptions = new QueryOptions();
openCGAClient.getStudyClient().search(query, queryOptions);

Getting summary data from a particular study. You can use the method of the getSummary
StudyClient class:

public class StudyClient extends CatalogClient<Study, StudyAclEntry> {
...
 public QueryResponse<StudySummary> getSummary(String studyId,
QueryOptions options) throws CatalogException, IOException
...
}

Inputs:

studyId: String containing the study alias or study name. You can get available study aliases
/names by using the method above.
options: QueryOptions object which will contain the pairs (filter, value) that form the query.
QueryOptions objects work as a Map object, by providing a method that enables to add the put
(filter, value) pairs. Available filters and possible values for them are those described at the Swa

 for the corresponding web service.gger specification

For example, getting summary data for study which is framed within project 1kG_phase3 reference_grch37
:

import org.opencb.commons.datastore.core.QueryOptions;
...
...
...
QueryOptions queryOptions = new QueryOptions();
openCGAClient.getStudyClient().getSummary("reference_grch37:1kG_phase3",
queryOptions);

Getting all available metadata for a particular study. You can use the method that the class get
StudyClient inherits from the CatalogClient class:

http://bioinfodev.hpc.cam.ac.uk/hgva-1.0/webservices/
http://bioinfodev.hpc.cam.ac.uk/hgva-1.0/webservices/
http://bioinfodev.hpc.cam.ac.uk/hgva-1.0/webservices/
http://bioinfodev.hpc.cam.ac.uk/hgva-1.0/webservices/

public abstract class CatalogClient<T, A> extends AbstractParentClient {
...
 public QueryResponse<T> get(String id, QueryOptions options) throws
IOException
...
}

Inputs:

id: String containing the study alias or study name. You can get available study aliases calling
the method of the StudyClient.search
options: must be set to null in this case, since no filtering options are available for this purpose.

For example, getting all metadata for study which is framed within the project :GONL reference_grch37

openCGAClient.getStudyClient().get("GONL", null);

Getting all samples metadata for a given study. You can use the method of the getSamples
StudyClient class:

public class StudyClient extends CatalogClient<Study, StudyAclEntry> {
...
 public QueryResponse<Sample> getSamples(String studyId, QueryOptions
options) throws CatalogException, IOException
...
}

Inputs:

studyId: String containing the study alias or study name. You can get available study aliases
/names by using the method above.
options: QueryOptions object which will contain the pairs (filter, value) that form the query.
QueryOptions objects work as a Map object, by providing a method that enables to add the put
(filter, value) pairs. Available filters and possible values for them are those described at the Swa

 for the corresponding web service.gger specification

For example, getting all samples metadata for study which is framed within project 1kG_phase3 reference
. Please, note that not all studies contain samples data, e.g. GONL, ExAC, among others, only _grch37

provide variant lists and aggregated frequencies, i.e. no sample genotypes.

import org.opencb.commons.datastore.core.QueryOptions;
...
...
...
QueryOptions queryOptions = new QueryOptions();
openCGAClient.getStudyClient().getSummary("reference_grch37:1kG_phase3",
queryOptions);

Getting information about samples

Get all metadata for a particular sample. You can use the method that the class SampleClient get
inherits from CatalogClient class:

public abstract class CatalogClient<T, A> extends AbstractParentClient {
...
 public QueryResponse<T> get(String id, QueryOptions options) throws
IOException
...
}

Inputs:

id: String containing the sample name. You can get available samples by using some of the
methods described above.
options: must be set to null in this case, since no filtering options are available for this purpose.

http://bioinfodev.hpc.cam.ac.uk/hgva-1.0/webservices/
http://bioinfodev.hpc.cam.ac.uk/hgva-1.0/webservices/

For example, get all metadata for sample of the study which is framed within the HG00096 1kG_phase3 r
 project:eference_grch37

openCGAClient.getSampleClient().get("HG00096", null);

Getting information about cohorts

Getting all samples metadata in a given cohort. You can use the method of the getSamples
CohortClient:

public class CohortClient extends AnnotationClient<Cohort, CohortAclEntry>
{
...
 public QueryResponse<Sample> getSamples(String cohortId, QueryOptions
options) throws CatalogException, IOException
...
}

Inputs:

cohortId: String containing the cohort id.
options: QueryOptions object which will contain the pairs (filter, value) that form the query.
QueryOptions objects work as a Map object, by providing a method that enables to add the put
(filter, value) pairs. Available filters and possible values for them are those described at the Swa

 for the corresponding web service.gger specification

For example, get all samples metadata for cohort from study which is framed within GBR 1kG_phase3
project :reference_grch37

import org.opencb.commons.datastore.core.QueryOptions;
...
...
...
QueryOptions queryOptions = new QueryOptions();
queryOptions.put("study", "reference_grch37:1kG_phase3");
openCGAClient.getCohortClient().getSamples("GBR", queryOptions);

http://bioinfodev.hpc.cam.ac.uk/hgva-1.0/webservices/
http://bioinfodev.hpc.cam.ac.uk/hgva-1.0/webservices/

	Using the Java REST client

