Python client library

Getting started
What can | ask for?
Configuration
Script example
Use case
Examples

Getting started

The first step is to import the module and initialize the CellBaseClient:

>>> from pycel | base. cbclient inport CellBased ient
>>> chbc = Cel | Basedient()

The second step is to create the specific client for the data we want to query (in this example we want to obtain information for a gene):

>>> gc = chc. get_gene_client()

And now, you can start asking to the CellBase RESTful service by providing a query ID:

>>> tfbs_responses = gc.get_tfbs('BRCAl') # Obtaining TFBSs for BRCAL gene

Responses are retrieved as JSON formatted data. Therefore, fields can be queried by key:

>>> tfbs_responses = gc.get_tfbs(' BRCAL')
>>> tfbs_responses[0]['result'][O0]['tfNane']
' E2F4'

>>> transcript_responses = gc.get_transcript (' BRCAl')
>>> ' Nunber of transcripts: %' % (len(transcript_responses[O]['result']))
' Nunber of transcripts: 27

>>> for tfbs_response in gc.get_tfbs(' BRCAL, BRCA2, LDLR):

.. print(' Nunber of TFBS for "%": %' % (tfbs_response['id'], len(tfbs_response['result'])))
" Nunber of TFBS for "BRCAl1": 175

' Number of TFBS for "BRCA2": 43'

' Number of TFBS for "LDLR': 141'

Data can be accessed specifying comma-separated IDs or a list of IDs:

>>> tfbs_responses = gc.get_tfbs(' BRCAL')
>>> | en(tfbs_responses)
1

>>> tfbs_responses = gc. get_tfbs(' BRCAL, BRCA2')

>>> | en(tfbs_responses)

>>> tfbs_responses = gc.get_tfbs([' BRCA1l', 'BRCA2'])
>>> [en(tfbs_responses)

If there is an available resource, but there is not an available method in this python package, the CellBaseClient can be used to create the URL of interest
and query the RESTful service:

>>> tfbs_responses = chc. get(category='feature', subcategory='gene', query_id="BRCAl', resource="tfbs")
>>> tfbs_responses[0]['result'][0]['tfNane']
' E2F4'

Optional filters and extra options can be added as key-value parameters (value can be a comma-separated string or a list):

>>> tfbs_responses = gc.get_tfbs(' BRCAL')
>>> |en(res[O]['result'])

175

>>> tfbs_responses = gc.get_tfbs(' BRCA1l', include='nane,id")

>>> [en(res[0]['result'])

175

>>> tfbs_responses = gc.get_tfbs('BRCAL', include = ['nane', 'id'])
>>> |en(res[O]['result'])

175

>>> tfbs_responses = gc.get_tfbs('BRCAL', |imt=100)

>>> [en(res[0]['result'])

100

>>> tfbs_responses = gc.get_tfbs(' BRCALl', skip=100)
>>> |en(res[O]['result'])
75

What can | ask for?

The best way to know which data can be retrieved for each client is either checking out the RESTful web services section of the CellBase Wiki or the CellB
ase web services

If we do not know which method is the most adequate for our task, we can get helpful information for each data-specific client:

>>> cbc. get_region_client().get_help()
Regi ond i ent

- get_clinical: Retrieves all the clinical variants

- get_conservation: Retrieves all the conservation scores

- get_gene: Retrieves all the gene objects for the regions. |If query param histogramtrue, frequency val ues
per genomic interval will be returned instead.

- get_nodel: Get JSON specification of Variant data nodel

- get_regulatory: Retrieves all regulatory elenents in a region

- get_repeat: Retrieves all repeats for the regions

- get_sequence: Retrieves genomnic sequence

- get_tfbs: Retrieves all transcription factor binding site objects for the regions. If query param
hi st ogranrtrue, frequency val ues per genomc interval will be returned instead.

- get_transcript: Retrieves all transcript objects for the regions

- get_variation: Retrieves all the variant objects for the regions. |If query param histogran¥true,
frequency val ues per genonmic interval will be returned instead.

We can get the accepted parameters and filters for a specific method of interest by using the get_help method:

>>> cbc. get_region_client().get_hel p(' get_gene', show _parans=True)

https://github.com/opencb/cellbase/wiki/RESTful-web-services
http://bioinfo.hpc.cam.ac.uk/cellbase/webservices/
http://bioinfo.hpc.cam.ac.uk/cellbase/webservices/

Configuration
Configuration stores the REST services host, API version and species.

Getting the default configuration:

>>> Configdient().get_default_configuration()
{"version': 'v4', 'species': 'hsapiens', 'rest': {'hosts': ['http://bioinfo.hpc.cam ac. uk:80/cellbase']}}

Showing the configuration parameters being used at the moment:

>>> cbc. show_configuration()
{"host': 'bioinfo.hpc.cam ac. uk: 80/ cel | base', 'version': 'v4', 'species': 'hsapiens'}

A custom configuration can be passed to CellBaseClient with a ConfigClient object. JSON and YML files are supported:

>>> from pycel | base. cbconfig i nport Configdient
>>> from pycel | base. cbclient inport CellBaseC ient

>>> cc = Configdient('config.json")
>>> cbc = Cel | Based ient(cc)

A custom configuration can also be passed as a dictionary:

>>> from pycel | base. cbconfig i nport Configdient
>>> from pycel | base. cbclient inport CellBaseC ient

>>> customconfig = {"'rest': {'hosts': ['bioinfo.hpc.cam ac.uk:80/cellbase']}, 'version': 'v4', 'species':
' hsapi ens'}

>>> cc = ConfigCient(customconfig)
>>> cbc = Cel | Based ient(cc)

If you want to change the configuration on the fly you can directly modify the ConfigClient object:

>>> cc = Configdient()
>>> chc = Cel | Based ient(cc)

>>> cbc. get_config()['version']

Cva
>>> cc.version = 'v3'

>>> cbc. get _config()['version']
vy

Script example

Loading Cel | Base and configuration clients
from pycel | base. cbconfig inport Configdient
from pycel | base. cbclient inport CellBasedient

Initializing CellBasedient
cc = ConfigQient("/path/to/config.json")
cbc = Cell Based ient(cc)

Initializing gene client
gc = cbc. get_gene_client()

Retrieving transcription factor binding sites (TFBS) for a gene |ist
gene_list = ['BRCAl', 'BRCA2', 'LDLR]

tfbs_responses = gc.get_tfbs(gene_list, include="id")

Printing the nunber of TFBS found for each gene

for response in tfbs_responses:
print(' Nunber of TFBS for "9%": %' % (response['id'], len(response['result'])))

Use case

A use case where PyCellBase is used to obtain multiple kinds of data from different sources can be found in this Jupyter Notebook

Examples

You can navigate from GitHub examples:

Error

Error with Markdown From URL macro: URL does not exist.
https://raw.githubusercontent.com/opencb/cellbase/next/cellbase-app/app/pycellbase/README.md

Please double check your URL. Perhaps you made a typo or perhaps the page has been moved.

This can also be caused by changing the Github repository containing the file from public to private. If this is the case go back to the raw
file and re-copy the link.

For support visit our Q&A in the Atlassian Community. You can ask a new question by clicking the "Create" button on the top right of the

Q&A.

http://nbviewer.jupyter.org/github/opencb/cellbase/blob/develop/clients/python/use_case.ipynb
https://community.atlassian.com/t5/tag/addon-com.atlassian.plugins.confluence.markdown.confluence-markdown-macro/tg-p

	Python client library

