
1.

2.

Variant Normalization
Overview

A genomic variant is represented by a locus , the (chromosome + position)
reference allele and list of alternate alleles. Genotypes are represented by the two
alleles in the sample at the locus.

Different variant calling tools may use subtly different representations for the same biological sequence
variant. If variants called from a sample are to be annotated or those from multiple samples are to be
merged it is important that variant calls are normalised to ensure consistent representation; see this vt

. In some cases normalisation may also be useful to identify and remove or for infoarticle GiaB article
spurious duplicates called within a call set from a single sample.

OpenCGA performs variant normalisation by default when genotypes are loaded into the database. The
procedures implemented by OpenCGA v2.0 are described in this document. The approach is similar but
not identical to other tools that perform variant normalisation such as , , and . This bcftools vt GATK vcflib
means that the representation of variants normalised by OpenCGA may differ from those from other tools.

Normalisation Procedure in OpenCGA v2.0
The normalisation procedure implemented by OpenCGA has been designed to resolve ambiguous
representations commonly found in VCF data. The OpenCGA variant data model is not constrained by
the VCF specification. This allows OpenCGA to represent some genotypes that are difficult for VCF to
represent. Normalisation assumes correct VCF input according to the , e.g. variant VCF specification
positions are 1-based.

The primary aim of OpenCGA normalisation is to standardise variant representation for storage and
annotation within the OpenCGA database. A side effect of the ability to export VCF from OpenCGA is
that the database of can be used as a VCF normalisation and merging tool. If used in this way users
must be mindful of limitations of VCF in the correct representation of some variants.

Regardless of normalisation the original call as specified in the input VCF is stored by OpenCGA allowing
the original record to be recapitulated if required.

Each step of the OpenCGA normalisation procedure as described below is performed sequentially on
each record of the input VCF file.

1. Rename chromosomes

Due to the lack of standard for the chromosome naming it is common to see different labels for the same
chromosome depending on the variant calling workflow. OpenCGA strips chromosome prefixes (, chrom c

, and). For example, and are normalised to and respectively. Also, for hrm chr ch chr1 chromX 1 X
mitochondria, the label is normalised to M MT.

2. Encode genotypes

VCF allows two different ways of representing the genotype alleles; with or without explicit allele
sequence. OpenCGA normalises to the latter, i.e. an allele code is used instead of the allele itself: A 0
value represents the reference allele, and any other value is a 1-based index into the alternate alleles. A
pseudo-VCF example of mapping from explicit to coded genotype alleles is shown in the following table:

Input Result

Encoding

1

#CHR POS REF ALT S1 S2 S3 S4
S5
1 100 A T A/A T/A A/T T|A
T/.

#CHR POS REF ALT S1 S2 S3 S4
S5
1 100 A T 0/0 0/1 0/1 1|0
./1

3. Split Multi-allelic records

Multi-allelic VCF records are produced in two main scenarios:

Single-sample: one sample (or individual) is multi-allelic for one specific position, ie. both
chromosomes are mutated at the same position with a different allele.
Multi-sample: as a consequence of merging VCF from different samples, ie. different samples
with different alleles come together in the same VCF record

Table of Contents:

Overview
Normalisation Procedure in
OpenCGA v2.0

1. Rename chromosomes
2. Encode genotypes
3. Split Multi-allelic records
4. Left align alleles vs.
reference
5. Allele Trimming

Simple trimming
Trimming InDels
Trim rightmost first

Example
Decomposition of alleles
Identification of duplicate variants
Skip normalization

http://dx.doi.org/10.1093/bioinformatics/btv112
http://dx.doi.org/10.1093/bioinformatics/btv112
http://dx.doi.org/10.1038/nbt.2835
http://www.htslib.org/doc/bcftools-1.2.html
http://genome.sph.umich.edu/wiki/Vt
https://www.broadinstitute.org/gatk/
https://github.com/ekg/vcflib
https://samtools.github.io/hts-specs/VCFv4.3.pdf

Consider this multi-sample VCF input record at chromosome 1 position 100. It lists four samples with
their genotypes being; homozygous reference [AA/AA], heterozygous SNP [AA/AT], heterozygous
insertion [AT/AAC] and heterozygous deletion [AA/A]:

#CHROM POS REF ALT FORMAT SAMPLE1 SAMPLE2
SAMPLE3 SAMPLE4
1 100 AA AT,AAC,A GT:AD 0/0:40,1,0,0 0/1:19,20,1,0 2/1:0:
20,22,0 0/3:19,0,0,20

OpenCGA splits such multi-allelic record to create one output record for each alternate allele. Note that
the multi-allelic nature of each record is maintained and allele-based fields are reordered. This is shown
in the pseudo-VCF below;

#CHROM POS REF ALT FORMAT SAMPLE1 SAMPLE2
SAMPLE3 SAMPLE4
1 100 AA AT,AAC,A GT:AD 0/0:40,1,0,0 0/1:19,20,1,0 2/1:
0,20,22,0 0/3:19,0,0,20
1 100 AA AAC,AT,A GT:AD 0/0:40,0,1,0 0/2:19,1,20,0 1/2:
0,22,20,0 0/3:19,0,0,20
1 100 AA A,AT,AAC GT:AD 0/0:40,0,1,0 0/1:19,0,20,1 2/1:
0,0,20,22 0/3:19,20,0,0

Each output record from the split is then subjected to the remaining steps of the independently
normalisation procedure. Normalisation in OpenCGA can therefore be considered "per allele", not "per
position".

4. Left align alleles vs. reference

In the left alignment step the start position of the variant is shifted as far to the left as possible with
respect to the reference sequence, "left aligned", as possible. The following example is adapted from the

. Consider the following deletion record; its alignment against the reference Centre for Statistical Genetics
shows that it falls within a short tandem repeat:

#CHROM POS REF ALT
1 9 ACA A

POS: 12345678901234
REF: GGGCACACACAGGG
ALT: A--

Several other records could be proposed that would result in the exact same sequence change, for
example;

#CHROM POS REF ALT POS: 12345678901234

1 7 ACA A ALT: A--

1 5 ACA A ALT: A--

1 3 GCA A ALT: G--

OpenCGA normalises to the leftmost representation, i.e. the one with the smallest POS value (in this
case POS=3).

For optimal left alignment especially in the case of insertions and deletions the flanking sequence of the
reference genome is required. The reference genome can be specified with the OpenCGA parameter refe

. Basic normalisation will still be performed if the parameter is omitted but it may be renceGenome
suboptimal.

5. Allele Trimming

Allele trimming consists on removing the leading (left trimming) and trailing (right trimming) bases that
are identical in both reference and alternate alleles. Left trimming requires the variant position to be
updated, for right trimming the variant position is unchanged.

Simple trimming

The following table shows a basic example of left and right trimming in pseudo-VCF notation.

https://genome.sph.umich.edu/wiki/Variant_Normalization#Left_alignment
http://docs.opencb.org/display/opencga/Indexing+Genomic+Variants#IndexingGenomicVariants-referenceGenome
http://docs.opencb.org/display/opencga/Indexing+Genomic+Variants#IndexingGenomicVariants-referenceGenome

Input Result

Left
trim

#CHROM POS REF ALT
1 100 AA AC

#CHROM POS REF ALT
1 101 A C

Righ
t
trim

#CHROM POS REF ALT
1 100 AA CA

#CHROM POS REF ALT
1 100 A C

Trimming InDels

Unlike VCF, variants in OpenCB do not require any "context base". Trimming can therefore result in
empty strings for the reference or alternate alleles. The following table shows two valid representations of
a deletion of 'T' at position 101 and the insertion of 'T' between positions 100 and 101. The table also
shows how OpenCGA normalisation results in a unique variant for both deletion and insertion.

Input Result

Deletion #CHROM POS REF ALT
1 100 AT A
1 101 TC C

#CHROM POS REF ALT
1 101 T -

Insertion #CHROM POS REF ALT
1 100 A AT
1 101 T TT

#CHROM POS REF ALT
1 101 - T

Trim rightmost first

For deletion or insertion in a region of repeated nucleotides the trimming operation can be done in
multiple ways. For this input there are four possible ways to normalise the variant. OpenCGA ensures
leftmost alignment by performing first the right trimming first

Input Possible normalisations OpenCGA result

#CHR POS REF ALT
1 100 CTCTCA CTCA

#CHR POS REF ALT
1 100 CT -
1 101 TC -
1 102 CT -
1 103 TC -

#CHR POS REF ALT
1 100 CT -

Example
OpenCGA represents variants internally as JSON objects, not pseudo-VCF records! Example JSON
representation of the four variants resulting from normalisation of the single VCF record in the second
table is shown on the page. This example uses several of the procedures Variant Normalization Example
described above.

Decomposition of alleles
The OpenCGA normalisation process does not, other than for left alignment and trimming, edit individual
alleles. For instance, decomposition of multi-nucleotide alleles into single-nucleotide primitives is not
currently performed.

Identification of duplicate variants
A result of normalisation can be the identification of duplicated records (i.e. alleles) in a single file
/sample. OpenCGA supports two deduplication policies: "Discard all" or "Max qual". The former discards b
oth duplicates whilst the latter retains the duplicate with the highest quality score. In both cases a warning
is logged.

Skip normalization
In certain scenarios the normalisation process could be undesired. This process can be skipped in
OpenCGA with the option . Use of this option is strongly discouraged.normalizationSkip

http://docs.opencb.org/display/opencga/Variant+Normalization+Example
http://docs.opencb.org/display/opencga/Indexing+Genomic+Variants#IndexingGenomicVariants-normalizationSkip

	Variant Normalization

