
Indexing Genomic Variants
Overview
An index pipeline is the process of ingesting data into an OpenCGA-Storage backend. We define a 
general pipeline that is used and extended for the supported bioformats like variants and alignments. 
This pipeline is extended by additional steps of enrichment.

This concept is represented in Catalog to help the tracking of this status in different files.

Index
Indexing data pipeline consists in two steps, first transform and validate the input raw data into an 
intermediate format, and second, load it into the selected database. The input file format is  , VCF
accepting different variations like gVCF or aggregated VCFs

Transform
Files are converted Biodata models. The metadata and the data are serialized into two separated files. 
The metadata is stored into a file named   serializing in json a single instance <inputFileName>.file.json.gz
of the biodata model  , which mainly contains the header and some general stats. Along VariantSource
with this file, the real variants data is stored in a file named   with a set <inputFileName>.variants.avro.gz
of variant records described as the biodata model  .Variant

VCF files are read using the library  , which provides a syntactic validation of the data. Further HTSJDK
actions on the validation will be taken, like duplicate or overlapping variants detection.

By default, malformed variants will be skipped and written into a third optional file named <inputFileName
 . If the transform step generates this file, a curation process should be taken to repair the >.malformed.txt

file. Otherwise, the variants would be skipped.

All the variants in the transform step will be normalized as defined here:  . This will Variant Normalization
help to unify the variants representation, since the VCF specification allows multiple ways of referring to a 
variant and some ambiguities.

Load
Loading variants from multiple files into a single database will effectively merge them. In most of the 
scenarios, with a good normalization, merging variants is strait forward. But in some other scenarios, with 
multiple alternates or overlapping variants, a more complex merge is needed in order to create a 
consistent database. This situations can be solved when loading the file configuring the , or merge mode a

 in the .posteriori aggregation operation

Loading process is dependent on the implementation. Here you can see some specific information for the 
two implemented back-ends.

Options

referenceGenome

Reference genome in FASTA format used during the normalization step for a complete left alignment.

normalizationSkip

Do not execute the .  INDELs will be stored with the context base.normalization process WARN:

Table of Contents:

Overview
Index
Transform
Load
Options

referenceGenome
normalizationSkip
gvcf
family
loadHomRef
loadSampleIndex
loadSplitData
loadMultiFileData
loadArchive
excludeGenotype
includeSampleData
postLoadCheck

Storage Engines
MongoDB

Merge Mode
Example
Performance 
advantages
How to configure the 
merge mode

Hadoop - HBase
Table Naming Policy
Table compression 
algorithm
Table pre-splitting
Samples index table
Load options

Reduce archive data
Load all reference 
variants from multi-
sample files
Treat low quality 
reference calls as 
missing (no call)
opencga.archive.non-
ref.filter

Limitations

https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://github.com/opencb/biodata/blob/develop/biodata-models/src/main/java/org/opencb/biodata/models/variant/VariantSource.java
https://github.com/opencb/biodata/blob/develop/biodata-models/src/main/java/org/opencb/biodata/models/variant/Variant.java
https://github.com/samtools/htsjdk
http://docs.opencb.org/display/opencga/Variant+Normalization
http://docs.opencb.org/pages/viewpage.action?pageId=15597866#IndexingGenomicVariants-VariantIndexPipeline-MongoDB
http://docs.opencb.org/display/opencga/Sample+Genotype+Aggregation
http://docs.opencb.org/display/opencga/Variant+Normalization


gvcf

Hint to indicate that the input file is in gVCF format.

family

Indicate that the files to be loaded are part of a family. This will set loadHomRef to YES if it was in AUTO 
and execute 'family-index' afterwards.

loadHomRef

Load HOM_REF genotypes. (yes, no, auto)

Default

auto

loadSampleIndex

Build sample index while loading. (yes, no, auto)

Default

auto

loadSplitData

Indicate that the variants from a group of samples is split in multiple files, either by  or by CHROMOSOME
. In either case, variants from different files must not overlap.REGION

loadMultiFileData

Indicate the presence of multiple files for the same sample. Each file could be the result of a different vcf-
caller or experiment over the same sample.

loadArchive

Load archive data. (yes, no, auto)

Default

auto

excludeGenotype

Do not include the genotype information.

includeSampleData

Index including other sample data fields (i.e. FORMAT fields). Use "all", "none", or CSV with the fields to 
load.

Default

all

postLoadCheck

Execute post load checks over the database

Default

auto

Storage Engines
OpenCGA offers two different implementations for the StorageEngine that use two different backend 
databases, each of one with particular properties.



MongoDB

The MongoDB implementation stores all the variant information in one centralised collection, with some 
secondary helper collections. In order to merge correctly new variants with the already existing data, the 
engine uses a stage collection to keep track of the already loaded data. In case of loading multiple files at 
the same time, this files will first be written into this stage collection, and then, moved to the variants 
collection, all at the same time.

Using this stage collection, the engine is able to solve the complex merge situations when loading the 
file, without the need of an extra aggregation step. Therefore, this storage engine does not implement the 
aggregation operation. Depending on the level of detail required, the merge mode can be configured 
when loading the files.

Merge Mode

For each variant that we load we have to check if the it already exists in the database, and, in that case, 
merge the new data with the existing variant. Otherwise, create a new variant.

We may find two types of overlapping variants: Variants from different sources that are in the same 
position with same reference and alternate (same variant), and variants that are not same but their 
coordinates (over the reference genome) are overlapping. 

At this point is when we define two modes of merging variants:

Basic merge. Only merging variants from different sources that are the same.
 . In addition to the basic merge, add the overlapping variants as secondary Advanced merge

alternates and rearrange genotypes.

It is expected to have more unknown values for basic merge than for advanced merge.

Example

In the next figure we can see an example of merging multiple variants, from different single-sample files.

On the left, the input files. On the right we can see the merge result, depending on the merge mode, 
differences in red.

For basic mode, there will be unknown values for certain positions. We can not determine if the value 
was missing ( ./. ), reference ( 0/0 ), or a different genotype. The output value for unknown genotypes can 
be modified by the user when querying. By default, the missing genotype ( ./. ) will be used.

In the advanced mode, the variants have gained a secondary alternate, and the field AD (Allele Depth) 
has been rearranged in order to match with the new allele order.

Performance advantages

Loading new files will be much faster with basic merge mode. Is is because we don't need now to check 
if the variant overlaps with any other already existing variant. We only need to know if the variant exists 
or not in the database, which takes a significant amount of time in advance mode.

How to configure the merge mode

The merge mode is defined when the first file is loaded, and can not be changed.

From the command line we should add  or  advanced--merge --merge basic



Hadoop - HBase

The storage engine implementation for Hadoop is based on  and . When Apache HBase Apache Phoenix
loading a file, it will be stored (by default, entirely) in the , and the variants (everything but archive table
the reference blocks) will be stored in the , using a . Also, from each variants table basic merge mode
variant (unless otherwise specified) only samples with non homozygous reference (HOM_REF, 0/0) 
genotype will be loaded.

To obtain an advanced merge, including all the overlapping variants and the reference blocks, see the ag
.gregation operation

Most of the common queries will go to the variants table, but in case of requiring some extra information, 
the archive table can be also queried. There is also a third table that contains a secondary index for 
samples, to allow instant queries by genotype.

Table Naming Policy

Variants table
<namespace>:<db-name>_variants
Archive table
<namespace>:<db-name>_archive_<study-id>
Sample index table
<namespace>:<db-name>_sample_index_<study-id>
Metadata table
<namespace>:<db-name>_meta

Table compression algorithm

HBase supports multiple  algorithms natively. Compression algorithms can be table compression
configured for each of the tables. By default, SNAPPY compression is used.

opencga.variant.table.compression
Compression for the variant table.
opencga.archive.table.compression
Compression for the archive table.
opencga.sample-index.table.compression
Compression for the sample index table.

Table pre-splitting

Pre-splitting HBase tables is a common technique that reduces the number of splits and provides a better 
balance of the regions across the Hadoop cluster. We can configure the number of pre-splits for each of 
the tables.

opencga.variant.table.presplit.size
Pre-split size for the variant table.
opencga.archive.table.presplit.size

.Pre-split size for the archive table

In order to do an optimal pre-splitting, the storage engine needs to know an approximation of the number 
of files to be loaded. This number can be configured with:

expected_files_number
By default, 5000

Samples index table

With the Apache Solr  we can query by any annotation field in HBase in subsecond secondary indexes
time. But this can not help when querying by sample (or genotype).

Detailed information available here:

Index Sample Genotypes in HBase (#838)
Genotype index intersect in HBase (#862)
Use variants SampleIndex when reading from MapReduce ( )#868

Load options

Reduce archive data

https://hbase.apache.org/
https://phoenix.apache.org/
http://docs.opencb.org/display/opencga/Sample+Genotype+Aggregation
http://docs.opencb.org/display/opencga/Sample+Genotype+Aggregation
https://hbase.apache.org/book.html#compression
http://docs.opencb.org/display/opencga/Secondary+Index
https://github.com/opencb/opencga/issues/838
https://github.com/opencb/opencga/issues/862
https://github.com/opencb/opencga/issues/868


By default, the engine writes in the archive table all the information from the variants that are reference 
blocks with HOM_REF genotype. This information represents, approximately between a 66% and a 90% 
of the original gVCF. So, reducing this part can have a big impact on the final size of the archive table. 
This feature can help to some installations with tied disk resources, or just because some information is 
not required at all for the analysis.

The fields to include can be configured using the following configuration parameter:

opencga.archive.fields
The default value is  It can be configured with a list of fields to be included in the archive all.
table.

FILTER
QUAL
FORMAT to include all the fields from the sample format, or FORMAT:K1,K2,

 to include specific fieldsK3,...
INFO to include all the fields from the file info, or to include INFO:K1,K2,K3,... 
specific fields

Example: QUAL,INFO:DP,FORMAT:GT,AD,DP
The above line will only include the QUAL, the DP from the file attributes, the GT, AD 
and DP from the sample data

Load all reference variants from multi-sample files

When loading multi-sample files, from each variant only samples with non homozygous reference 
(HOM_REF, 0/0) genotype will be loaded. We can specify to load all the data from the samples using the 
following parameter:

opencga.variant.table.load.reference
The default falue is  ( )false. #915

Treat low quality reference calls as missing (no call)

Current implementation does not store reference calls in the second table . This allows to variants
optimize disk space and improve performance. The assumption is that when a sample genotype is not 
present then it was a reference call since all the other genotypes including missing are stored.

The problem is that current variant callers are still far from being perfect and some variants having a 
reference call show a very low coverage or quality scores. So, in some use cases, users might need to 
confirm that  was good enough.reference call

A simple solution for this would be treat low quality  calls as  calls, so they would be reference missing
stored in the  table in the same way than missing. By doing this users will know that not present variant
reference calls have a good quality and there is no need to get them.

Users can configure low quality reference block in the configuration file, for instance DP<5 AND GQ<20.

opencga.archive.non-ref.filter

The filter is a list of key, operator, value, separated by ";".

Keys: , , , QUAL FILTER FORMAT:format-key INFO:info-key
Ops:

>, , ,  : for numerical values< >= <=
= for comma separated values
!= Only for  keysFITLER

If a reference block does not have any of the required fields, will pass the filter, and will be treat as 
a missing.

Examples:

QUAL<5;FILTER=LowQual,LowGQ;FORMAT:DP<10
FILTER!=PASS

Limitations

You can not load two files with the same sample in the same study. See  . OpenCGA#158
There is an exception for this limitation for the scenarios where the variants were split in multiple 
files (by chromosome, by type, ...). In this case, you can use the parameter --load-split-
data. SeeOpenCGA#696
You can not index two files with the same name (e.g.    and /data/sample1/my.vcf.gz /data

) in the same study. This limitation should not be a problem in any real /sample2/my.vcf.gz
scenario, where every VCF file usually has a different name. If two files have the same name, 
the most likely situation is that they contain the same samples, and this is already forbidden by 
the previous limitation.

https://github.com/opencb/opencga/issues/915
https://github.com/opencb/opencga/issues/158
https://github.com/opencb/opencga/issues/696



	Indexing Genomic Variants

