RESTful Web Services
RESTfUI APl DeS|gn Table of Contents:

. ® RESTful API Design
Understanding the URL * Understanding the URL
® URL parameters

The general format of the REST API web services is: ® apiVersion

® resource

® IDs
http://HOST_URL/ APPLI CATI OV webser vi ces/ rest/ {api Versi on}/{resource}/{id * options
(s)}/{endpoi nt}?{options} ® REST Response

® OpenCGA 1.x
® OpenCGA 2.x
® Resources and Endpoints
® Catalog Web Services
® Analysis Web Services
® Swagger
® Client Libraries
® Deprecation Policy

where HOST_URL is the URL pointing to the host server and APPLICATION is the name of Java war
file deployed in web server (eg. tomcat), for example http://bioinfo.hpc.cam.ac.uk/opencga-prod/

Entities inside the curly braces { } are the web service parameters, and they are treated as variables. For
example the following URL:

http://bioi nfo. hpc. cam ac. uk/ opencga- prod/ webser vi ces/rest/vl/ sanpl es
/ H301879, HZ01880/ i nf 0?st udy=1000g

As it is explained later in this documentation, this RESTful web service will return the information stored
in OpenCGA of the user demo.

® apiVersion (v2) : indicates OpenCGA version to retrieve information from, data models and API
may change between versions.

® resource : specifies the data type of what the user wants to query by, in this examples the
resources are samples. This is one of the different resources listed below.

® id : the resources ID we want to query by. In this example are HG01879 and HG01880. Path
parameters are limited to 100 IDs.

® endpoint (info) : these parameters must be specified depending on the nature of your input
data. For instance, info is used to fetch the information stored in the database regarding the id's
passed.

® options (study=1000g) : variables in key value pair form, passed as query parameters.

URL parameters

apiVersion

apiVersions are numbered as v1, v2, etc. At this moment we are heading to second stable apiVersion
which will be v2.

resource

There are several metadata resources implemented such as users, samples, individuals, ... see below for
more info.

IDs

This is the unique identifier(s) corresponding to the resource we want to interact with. Plural means a
comma separated list of IDs can be passed to improve performance with a single REST call rather than
multiple calls. OpenCGA preserves the order of the results with corresponding IDs. A Boolean variable, si
lent, can be set to indicate, in case of a failure (resource doesn't exist, permission denied etc), whether
the user is interested in receiving partial results (true) with the information that could be successfully
retrieved or just a failure with no results. As a trade off between performance and ease of use a
maximum of 100 IDs are allowed in one web service.

options

These query parameters can modify the behaviour of the query (exclude, include, limit, skip and count) or
add some filters to some specific endpoints to add useful functionality. The following image shows some
typical options for a certain web service.

http://bioinfo.hpc.cam.ac.uk/opencga-prod/

Parameters
Parameter Value Description Parameter Type Data Type

apiversion |y1 (default) ¥ OpencGA major version path string
sid Session id query string
Authorization Bearer JWT Authentication token header string

families (required) Comma separated list of path string
family IDs or names up to a
maximum of 100

study Study [luser@lprojectlstudy query string
where study and project can be
either the d or alias
version Family version query integer
allversions | faise (default ¥ Fetch al family versions. query boolean
silent faise (defaull) v Boolean to accept either only query boolean
complete (false) or partial (true)
results
include Fields included in the response, ~ query string
whole JSON path must be
provided
exclude Fields excluded in the response, query string

whole JSON path must be
provided

REST Response

OpenCGA 1.x

Most web services return the results encapsulated in a single QueryResponse object (view data model)
consisting of some metadata and a list of QueryResult objects (view data model) called response
containing the data and metadata requested. The reason for this two-level response is that some REST
web services allow to pass multiple IDs as input parameter, this improves significantly the performance
by reducing the number of calls, for instance a calling /info method with three sample IDs will return a Qu
eryResponse object with three QueryResults. Then, each QueryResult can contain multiple results,
for instance when getting all samples from an individual or when fetching all variants from a gene.

The_Response object as well as the behaviour regarding the nested lists change in OpenCGA 2.x (see
b

However, most of the web services will return a QueryResponse with one single QueryResult with one
or more result. In general the response object looks like:

https://github.com/opencb/java-common-libs/blob/develop/commons-datastore/commons-datastore-core/src/main/java/org/opencb/commons/datastore/core/QueryResponse.java
https://github.com/opencb/java-common-libs/blob/develop/commons-datastore/commons-datastore-core/src/main/java/org/opencb/commons/datastore/core/QueryResult.java

QueryResponse Object

{
"api Version": "v1",
"time": 19,
"warni ng": "",
"error": ""
"queryOptions": {
"nmetadata": true,
"ski pCount": false,
"limt": 10
b
"response": [
{
"id": "search",
"dbTi ne": 18,
"nunResul ts": 10,
"nunirot al Resul ts": 56,
"war ni ngMsg": "",
"errorMsg": ""
"resul t Type": "",
"result": [
{
/1l result 1
H
{
Il result 2
H
11
/1 result 10
}
]
}
]
}
where:
® Line 1: single QueryResponse object
® Lines 2 and 3: show the version and the duration time (ms)
® Lines 4 and 5: show warning and error messages, for instance when having network issues
you could get "Catalog database not accessible"
® Line 6: summary of all option parameters provided
® Line 11: list of QueryResults called response. In this example, and in most of calls, there is
only one QueryResult.
® Line 14: database duration time (ms) for each QueryResult.
® Line 15 and 16: number of elements returned in the list result (see below) and total number of
records found in the database for a given query.
® Line 17 and 18: specific warning and error messages for each QueryResult
® Line 19: type of result such as resource.
® Line 20: list of results for this query, this can be samples, variants, ...
OpenCGA 2.x

REST web services return the response wrapped in a RestResponse object (view data model). This
consists of some metadata and a list of OpenCGAResult objects (view data model) called responses co
ntaining the data results and metadata requested. The first response of the list will always contain the
response of the OpenCGA federation being directly queried. Any additional response in the list will
belong to other federated servers that could be connected. Each federated response will contain a list of r
esults (OpenCGAResult) containing the data that has been queried.

https://github.com/opencb/opencga/blob/develop/opencga-core/src/main/java/org/opencb/opencga/core/response/RestResponse.java
https://github.com/opencb/opencga/blob/develop/opencga-core/src/main/java/org/opencb/opencga/core/response/OpenCGAResult.java

RestResponse object

{
"api Version": "v2",
"time": 23,
"paranms": {
"include": "id",
"study": "studyl",
“limt": "3"
}
"events": [
{
"type": "WARNI NG',
"message”: "This is a devel opnent version OpenC&A 2. 0. 0-RC'
}
I
"responses": [
{
"time": 16,
"events": [],
"nunResul ts": 3,
"results": [
{
"id": "HGE1879"
H
{
"id": "HG01880"
H
{
"id": "H®X1881"
}
1,
"resul t Type": "org.opench. opencga. core. nodel s. Sanpl e",
"nunmivat ches": 3502,
"num nserted": O,
"nunlpdat ed": O,
"nunDel eted": 0O
}
]
}
where:
® Line 1: single RestResponse object
® Lines 2 and 3: show the version and the duration time (ms)
® Lines 4-8: show all the parameters that have been provided.
® Line 9-14: show an events array where info, warning and error messages will be shown: For

instance, when having network issues you could get "Catalog database not accessible".
Line 15: list of DataResults called responses. In this example, because federation is disabled,
it only contains a single DataResult.

® Line 17: database duration time (ms) for each DataResult.

Line 18: list of events where info, warning and error messages will be shown. For instance, it
can show messages such as "Permission denied to access sample xxx".

Line 19: number of elements returned in the results list.

Line 20-30: List of results for this query.

Line 31: resource type of results.

Line 32: total number of records found in the database for the given query.

Line 33-35: Number of elements inserted, updated and deleted in the database. These counters
only make sense for create, updated and delete operations.

Resources and Endpoints

REST API is organised into two main groups of web services, one to work with metadata and a different
one to run some analyses: Catalog and Analysis. See below a description of the web services.

Catalog Web Services

Contains all endpoints for managing and querying metadata and permission.

Resource Path Description Main
Endpoints
Users lusers Different methods to work with users info, create,
login, ...
Projects Iprojects Projects are defined for each user and contains studies info, create,
studies, ...
Studies Istudies | Studies are the main component of OpenCGA Catalog. They can be info, create,
shared with other users and are the containers of the data (files, groups, ...
samples, cohorts, jobs...).
Files [files Files are added to the study and can be indexed to be queried info, create,
index, share, ...
Jobs ljobs Jobs are used to execute analyses. info, create, ...
Families /families ' Family is a connected collection of individuals based on their info, create, ...
relationship.
Individuals /individ | Individual is the member from which a sample was taken. info, create, ...
uals
Samples /sampl | Samples are each of the experiment samples, typically matches a info, create,
es NGS BAM file or VCF sample. annotate,
share, ...
Cohorts Icohorts | Cohort is a group of samples that share some common properties. info, create,
These are used for data analysis. stats, samples,
Clinical /clinical | This handles creating and search of a clinical analyses. info, create, ...
Analysis
Meta Imeta Contains basic information about the status of an OpenCGA ping, about,
installation instance. status
GA4GH /gadgh = GA4GH standard web services to search genomics data in OpenCGA | variant search,
reads search,
responses

Analysis Web Services

Different endpoint for running the alignment, variant and clinical analysis

Category Path Description Main Endpoints
Alignment /analysis = Operations over Read Alignments to facilitate complete index, query, stats, coverage
Analysis lalignme = analysis with different tools.

nt
Variant /analysis = Operations over Genomic Variants to facilitate complete ' index, stats, query, validate,
Analysis /variant | analysis with different tools. ibs, facet, samples,

metadata

Clinical Anal ' /analysis = You can manage Clinical Analysis metadata (e.g create execute
ysis [clinical | a case, set permissions) or run a genome interpretation

Swagger

OpenCGA has been documented using Swagger project. Detailed information about resources, endpoints
and options is available at:

http://bioinfo.hpc.cam.ac.uk/opencga-demo

Client Libraries

Currently OpenCGA implements the following four client libraries:

1. Java

2. Python

3. R

4. JavaScript

http://swagger.io/
http://bioinfo.hpc.cam.ac.uk/opencga-demo
http://docs.opencb.org/display/opencga/Java
http://docs.opencb.org/display/opencga/Python
http://docs.opencb.org/display/opencga/R
http://docs.opencb.org/display/opencga/JavaScript

Deprecation Policy

Certain APIs are deprecated over the period of time as OpenCGA is a live project and continuously
improved and new features are implemented. Deprecation cycle consists of a warning period to let make
user aware that these services are considered for change and highly likely will be replaced followed by a
deprecated message. OpenCGA supports deprecated services for two releases (Deprecated and Next

one). Deprecated services are hidden from Swagger in the following release and completely removed in
the next one.

Deprecation Life Cycle

Warni ng (working) ---> Deprecated (working) ---> Hidden (working) --->
Renoved (not working)

All deprecated web services are clearly marked as deprecated along with a warning help message for
user.

e

Implementation Notes

Fetch a user configuratior] [DEPRECATED]

‘This webservice is deprecated. Users should use /{user}/configs webservice instead.

	RESTful Web Services

