
Python
Overview
CellBase implements a Python client library called to query data through REST web PyCellBase
services API. PyCellBase provides programmatic access to REST web services, all implemented
providing an easy, lightweight, fast and intuitive access to all CellBase data in a user-friendly way without
the need of installing any local database, you just need to configure the remote CellBase REST URL.
Data is always available by a high-availability cluster and queries have been tuned to ensure a real-time
performance. PyCellBase offers the convenience of an object-oriented scripting language and provides
the ability to integrate the obtained results into other Python applications. More info about this package in
the Python client tutorial section. PyCellBase uses to improve performance when the multithreading
number of queries exceed a specific limit.

PyCellBase implements a class factory can create all the to the data we CellBaseClient different clients
want to query (e.g. gene, transcript, variation, protein, genomic region, variant). Each of these clients
implement different functions to query all REST web services. Most of these methods will need to be
provided with . Optional filters and extra options can be added as comma-separated IDs or list of IDs
key-value parameters. are retrieved as . Therefore, fields can be Responses JSON formatted data
queried by key. data as host, API version, or species is stored in a ConfigClient object. A Configuration
custom configuration can be passed to CellBaseClient with a ConfigClient object provided with a JSON
or YAML config file. If you want to change the configuration on the fly you can directly modify the
ConfigClient object.

PyCellBase is open-source and code can be found at https://github.com/opencb/cellbase
. PyCellbase be easily installed using PyPI. Please, /tree/develop/clients/python/pycellbase

find more details on how to use the python library at: Python client tutorial

Installation
Python client requires although most of the code is fully compatible with Python 2.7. You can Python 3.x,
install PyCellBase either from repository or from the source code.PyPI

PyPI

PyCellBase client is deployed at and available at . It can be easily PyPI https://pypi.org/project/pycellbase
installed using by executing:pip

$ pip install pycellbase

Source Code

PyCellBase can be installed from source code. You can get CellBase source code by cloning GitHub
 repository and executing :CellBase setup.py

creates a folder called cellbase with the source code from branch
'master'
$ git clone -b master https://github.com/opencb/cellbase.git

move to pycellbase folder and install
$ cd cellbase/clients/python
$ python setup.py install

Getting Started

Configuration

Configuration stores the REST services host, API version and species.

Getting the default configuration:

Table of Contents:

Overview
Installation

PyPI
Source Code

Getting Started
Configuration
Querying data
Integrated Help

PyCellBase API

Useful Links

PyPI CellBase
PyCellBase examples

https://github.com/opencb/cellbase/tree/develop/clients/python/pycellbase
https://github.com/opencb/cellbase/tree/develop/clients/python/pycellbase
http://docs.opencb.org/display/cellbase/Python+client+library
https://pypi.org/
https://pypi.org/
https://pypi.org/project/pycellbase/
https://github.com/opencb/cellbase
https://github.com/opencb/cellbase
https://pypi.org/project/pycellbase/
https://github.com/opencb/cellbase/tree/next/cellbase-app/app/pycellbase

>>> ConfigClient().get_default_configuration()
{'version': 'v4', 'species': 'hsapiens', 'rest': {'hosts':
['http://bioinfo.hpc.cam.ac.uk:80/cellbase']}}

Showing the configuration parameters being used at the moment:

>>> cbc.show_configuration()
{'host': 'bioinfo.hpc.cam.ac.uk:80/cellbase', 'version': 'v4', 'species':
'hsapiens'}

A custom configuration can be passed to CellBaseClient with a ConfigClient object. JSON and YML files
are supported:

>>> from pycellbase.cbconfig import ConfigClient
>>> from pycellbase.cbclient import CellBaseClient

>>> cc = ConfigClient('config.json')
>>> cbc = CellBaseClient(cc)

A custom configuration can also be passed as a dictionary:

>>> from pycellbase.cbconfig import ConfigClient
>>> from pycellbase.cbclient import CellBaseClient

>>> custom_config = {'rest': {'hosts': ['bioinfo.hpc.cam.ac.uk:80
/cellbase']}, 'version': 'v4', 'species': 'hsapiens'}
>>> cc = ConfigClient(custom_config)
>>> cbc = CellBaseClient(cc)

If you want to change the configuration on the fly you can directly modify the ConfigClient object:

>>> cc = ConfigClient()
>>> cbc = CellBaseClient(cc)

>>> cbc.get_config()['version']
'v4'

>>> cc.version = 'v3'
>>> cbc.get_config()['version']
'v3'

Querying data

The first step is to import the module and initialize the CellBaseClient:

import pycellbase dependencies
from pycellbase.cbconfig import ConfigClient
from pycellbase.cbclient import CellBaseClient

CellBaseClient object is a factory that allows to create all the other
clients
cbc = CellBaseClient()

CellBaseClient factory object allows to create all the other clients. The next step is to create a specific
client to query CellBase, for instance to call to web services:Gene

gc = cbc.get_gene_client()

And now, you can start asking to the CellBase RESTful service by providing a query ID:

tfbs_responses = gc.get_tfbs('BRCA1') # Obtaining TFBSs for BRCA1 gene

Responses are retrieved as JSON formatted data. Therefore, fields can be queried by key:

>>> tfbs_responses = gc.get_tfbs('BRCA1')
>>> tfbs_responses[0]['result'][0]['tfName']
'E2F4'

>>> transcript_responses = gc.get_transcript('BRCA1')
>>> 'Number of transcripts: %d' % (len(transcript_responses[0]['result']))
'Number of transcripts: 27'

>>> for tfbs_response in gc.get_tfbs('BRCA1,BRCA2,LDLR'):
... print('Number of TFBS for "%s": %d' % (tfbs_response['id'], len
(tfbs_response['result'])))
'Number of TFBS for "BRCA1": 175'
'Number of TFBS for "BRCA2": 43'
'Number of TFBS for "LDLR": 141'

Data can be accessed specifying comma-separated IDs or a list of IDs:

>>> tfbs_responses = gc.get_tfbs('BRCA1')
>>> len(tfbs_responses)
1

>>> tfbs_responses = gc.get_tfbs('BRCA1,BRCA2')
>>> len(tfbs_responses)
2

>>> tfbs_responses = gc.get_tfbs(['BRCA1', 'BRCA2'])
>>> len(tfbs_responses)
2

If there is an available resource, but there is not an available method in this python package, the
CellBaseClient can be used to create the URL of interest and query the RESTful service:

>>> tfbs_responses = cbc.get(category='feature', subcategory='gene',
query_id='BRCA1', resource='tfbs')
>>> tfbs_responses[0]['result'][0]['tfName']
'E2F4'

Optional filters and extra options can be added as key-value parameters (value can be a comma-
separated string or a list):

>>> tfbs_responses = gc.get_tfbs('BRCA1')
>>> len(res[0]['result'])
175

>>> tfbs_responses = gc.get_tfbs('BRCA1', include='name,id')
>>> len(res[0]['result'])
175

>>> tfbs_responses = gc.get_tfbs('BRCA1', include = ['name', 'id'])
>>> len(res[0]['result'])
175

>>> tfbs_responses = gc.get_tfbs('BRCA1', limit=100)
>>> len(res[0]['result'])
100

>>> tfbs_responses = gc.get_tfbs('BRCA1', skip=100)
>>> len(res[0]['result'])
75

If there is an available resource, but there is not an available method in this python package, the CellBas
 class can be used to . This class is able to access the RESTful Web eClient create the URL of interest

Services through the method it implements. In this case, this method needs to be provided with those get
parameters which are required by the URL: category (e.g. feature), subcategory (e.g. gene), ID to search
for (e.g. BRCA1) and method to query (e.g. search).

Integrated Help

The best way to know which data can be retrieved for each client is either checking out the RESTful web
 section of the CellBase Wiki or the services CellBase web services

If we do not know which method is the most adequate for our task, we can get helpful information for
each data-specific client:

>>> cbc.get_region_client().get_help()
RegionClient
 - get_clinical: Retrieves all the clinical variants
 - get_conservation: Retrieves all the conservation scores
 - get_gene: Retrieves all the gene objects for the regions. If query
param histogram=true, frequency values per genomic interval will be
returned instead.
 - get_model: Get JSON specification of Variant data model
 - get_regulatory: Retrieves all regulatory elements in a region
 - get_repeat: Retrieves all repeats for the regions
 - get_sequence: Retrieves genomic sequence
 - get_tfbs: Retrieves all transcription factor binding site objects
for the regions. If query param histogram=true, frequency values per
genomic interval will be returned instead.
 - get_transcript: Retrieves all transcript objects for the regions
 - get_variation: Retrieves all the variant objects for the regions. If
query param histogram=true, frequency values per genomic interval will be
returned instead.

We can get the accepted parameters and filters for a specific method of interest by using the meget_help
thod:

>>> cbc.get_region_client().get_help('get_gene', show_params=True)

PyCellBase API
PyCellBase implements a object that acts as a factory to create all different clients such CellBaseClient
as RegionClient or GeneClient. Each of this clients implements a Python function to query each REST
web service, you can see all web services at http://bioinfo.hpc.cam.ac.uk/cellbase/webservices/

https://github.com/opencb/cellbase/wiki/RESTful-web-services
https://github.com/opencb/cellbase/wiki/RESTful-web-services
http://bioinfo.hpc.cam.ac.uk/cellbase/webservices/
http://bioinfo.hpc.cam.ac.uk/cellbase/webservices/

	Python

