Using the Python client

An explanation about how to install and use the Python client can be found here: Python

However, in this document we will create an example tutorial to learn how to work with the Python client in order to get the most out of it.

scriptl.py

First, we need to inport both the dientConfiguration and the OQpenCGAd i ent
from pyopencga. opencga_config i nport dientConfiguration
from pyopencga. opencga_client inport OpenCGAC i ent

The main client-configuration.ym file has a 'host' section to point to the Rest OQpenCGA endpoi nts.
We need to either pass the path to the configuration file or a dictionary with the fornat of the file.
config = CientConfiguration('/opt/opencgal/conf/client-configuration.ym"')
config = CientConfiguration({
"rest": {
"host": "http://bioinfo.hpc.cam ac. uk/ opencga- denp"

19

And finally create an instance of the OpenCGAC i ent passing the configuration
oc = OpenCGAC i ent (config)

Now we need to authenticate.

oc. login(' myUser') # 1f done this way, password will be pronpted to the user so it is not
di spl ayed but. ..

oc.login(' myUser', 'nyPassword') # ... it is also possible to pass the password directly as an additional
par amet er

Let's assune our installation already has been popul ated and we are interested in |ooking for

all the famlies containing a concrete disorder: 'Rod-cone dystrophy'. To fetch this data, we will need to:
fam |ly_query_response = oc.fam |ies.search(study="studyl", |imt=10, disorders="Rod-cone dystrophy", include="
id, menbers.id")

Running oc.fam|ies.search(di sorders="Rod-cone dystrophy") with only the 'disorders' field would only work
if only one project and one study has been defined. However, we expect that nost of the OpenCGA installations
will have nore than one study, so we need to specify the fanmilies of which study we are | ooking for.

Additionally, we are passing limt = 10 to limt the nunber of famly results we want to fetch. Because this
is an exanple, we are sinply linmiting the nunber of results to 10.

Finally, if we don't specify anything else, all the values fromthe Family will be fetched. Wien witing
scripts, we are nornally interested in just a few fields of a whole entry, so adding the include/exclude
fields

will definitely help us getting the results faster as we will avoid sending data we are going to discard
t hr ough

the network. In this particular case, we are only interested in getting the Famly id and the id of the
nenber s

of the famly. To know what fields you can include/exclude, please follow the data nodel s we have defi ned.

fam ly_query_response is an instance of the QueryResponse class defined in the Python library. To read the
fields,

we could do the follow ng:

fam |ly_query_response.tine

fam | y_query_response. api Versi on
fam |y_query_response. queryOpti ons
fam | y_query_response. war ni ng

fam |l y_query_response. error

fam | y_query_response. responses

Get the time spent with the REST call

Get the APl version of the REST

Get the QueryOptions of the call (include/exclude, linit, skip, count...)
Get warni ng nmessages

Cet error nessages

Get the responses (Array of QueryResults containing the data queried)

H OB H B R

We can iterate over all the results to print all the id' s using the '"results()' method such as in the exanple
bel ow:
for famly in famly_query_response.results():

print (famly["id"])

We could have this sane behaviour if we run the follow ng script, which is why "results()' is that useful.
for query_result in famly_query_response.responses:
for famly in query_result['results']:

http://docs.opencb.org/display/opencga/Python

print (famly['id])

If we want to know exactly the anmount of results obtained, we can run:
fam |ly_query_response. numresults()

O let's say that instead of querying the data, we only wanted to get the nunber of famlies in the study
with that disorder. In that case, we coul d:
fam |y_count _response = oc.fam |ies.search(study="studyl", disorders="Rod-cone dystrophy", count=True)

And then get the number of matches by calling to the num natches nethod:
fam | y_count _response. num nat ches()

Now that we know how to work with the OpenCGA QueryResponse object, we will wite a script to fetch all the
vari ants
falling in the 'BMWR2' gene found in any nenber of the family. In this case, we will limt the variant query
to a maxi num
of 10 results excluding the sanple information (sanple infornmation can be huge and woul d make this query nuch
sl ower) .
for famly in oc.fam|lies.search(study="studyl",|imit=10, di sorders="Rod-cone dystrophy",include="id").results():
print ("Famly: " + famly['id])
variant_response = oc.variant.query(famly=famly['id], gene= 'BMPR2', study='studyl',
i ncl udeSanpl es=None, [init=10)
if variant_response.numtotal _results() > 0O:
for variant in variant_response.results():
print (variant['chrompsone'] + ":" + str(variant['start']) + "-" + str(variant['end]) + "\t' +
variant['type'])
el se:
print ("No variant results found")
print()

	Using the Python client

