
1.
2.

Microsoft Azure HDInsight
Work in Progress

This Case Study is still under development.

Genomic and Clinical Data
For this proof of concept (PoC) we loaded all the genomic variants of about from 4,700 genomes
Genomics England variants were loaded and indexed in the development version OpenCGA 2.0.0-beta. ,
In total we loaded about from 208 million unique variants 4,700 g files accounting for about VCF

 of compressed disk space. It is worth noting that these files were generated using Dragen 2.x and 20TB
the are unusually big, about 5-6GB per file.

Platform
For this proof of concept (PoC) we used the development version using the OpenCGA v2.0.0-beta
Hadoop Variant Storage Engine that uses as back-end. We also used for Apache HBase 4.6CellBase
the variant annotation.

For the platform we used a 10-nodes cluster using . 3.6Azure HDInsight Data Lake Storage Gen2
HDInsight 3.6 uses (with and) and we used Azure 2.6.5Hortonworks HDP Hadoop 2.7.3 HBase 1.1.2
Batch for loading concurrently all the VCF files which had been copied previously to a NFS server, you
can see details here:

Node Type Nodes Azure
Type

Cores Memory (GB) Storage

Hadoop Master 3 Standard
_D12_V2

4 28 Data Lake
Gen2

Hadoop Worker 10 Standard
_DS13_V2

8 56 Data Lake
Gen2

Azure Batch Queue 20 Standard
_D4s_v3

4 16 NFS
Server

Initially, we evaluated the new HDInsight 4.0, although it worked quite well there were some few minor
issue, so for this PoC we decided to use the more stable HDInsight 3.6 () over Data Lake Gen2 (HDI3.6 D

), we will refer to this as During the PoC we worked with Azure engineers to debug and L2 HDI3.6+DL2.
fix all these issues, unfortunately we did no have time to repeat the benchmark.

As you will see below in the Analysis Benchmark section, once we completed the PoC we increased the
size of HDInsight to 20 nodes and repeated some tests to study the performance improvement.

Genomic Data Loading and Indexing
In order to study the we set up a Azure Batch queue of 20 computing nodes. This loading performance
allowed us to load multiple files at the same time from different servers. We configured Azure Batch to
load 1 VCF file per node resulting in 20 files being loaded in HBase simultaneously. During the load we
studied two different configurations:

Loading VCF files vs. loading transformed files
Using HDD vs. SSD disk in the NFS server

 You can observe the results in the following plot:

Table of Contents:

Genomic and Clinical Data
Platform
Genomic Data Loading and
Indexing
Analysis Benchmark

Variant Storage Operations
Genotype Aggregation
Variant Annotation
Cohort Stats Calculation
Sample Variant Indexing

Query Benchmark
Queries
Scenarios
Results

GWAS

https://hbase.apache.org/
http://docs.opencb.org/display/cellbase/CellBase+Home
https://azure.microsoft.com/en-gb/services/hdinsight/
https://docs.microsoft.com/en-gb/azure/storage/blobs/data-lake-storage-introduction
https://www.cloudera.com/products/hdp.html

1.

2.

1.
2.
3.

Some comments:

As expected loading already transformed files is much faster since we only need to load and
index data in HBase. See this link for more information Indexing Genomic Variants
Also, loading from SSD disks showed a better performance

The most typical scenario when indexing genomic data is to at the same time, so transform+load
assuming SSD disk the observed performance was about 380 VCF files indexed a day, or about 2TB

. It is worth noting that:/day

gVCF used were several times bigger than usual
the number of Hadoop worker nodes was just 10
we loaded up to 20 files concurrently but this could have been increased

These variables have a huge impact in the indexing performance, so the expected performance with
more real gVCF files and production cluster is more than 1,000 VCF a day.

Analysis Benchmark
In this section you can find information about the performance of main variant storage engine operations,
queries and analysis. Please, for data loading performance information go to section Genomic Data

 above.Load

Variant Storage Operations

Variant Storage operations take care of preparing the data for executing queries and analysis. Some of
the most important operations include: , , Genotype Aggregation Variant Annotation Cohort Stats

 and .Calculation Sample Variants Indexing

Genotype Aggregation

We executed an initial aggregation with the first batch 700 samples accounting for 74.096.015 variants.
This run in about without any issue, this performance is expected to be quite stable. Also, the 4:10 hours
number of worker nodes affects the performance, unfortunately, because lack of time we could only test
with 10 nodes.

Variant Annotation

This operation uses the to annotate each unique variant in the database, this annotation CellBase
include consequence types, population frequencies, conservation scores clinical info, ... and will be
typically used for variant queries and different analysis. We executed variant annotation during the
variant indexing, in OpenCGA 2.0.0 you can load variants and annotate at the same time, the
performance of variant annotation is affected mainly by CellBase installation, in this PoC we used a small
CellBase installation from University of Cambridge which is far from ideal. The performance observed
was about 120 million variants annotated a day.

Cohort Stats Calculation

We pre-computed the variants stats for the 200 million variants across the 4,700 samples, this operation
includes the calculation and indexing of the variant stats. We run this few times with 10 nodes and 20
nodes. The observed performance was:

With : 10-nodes 1:50 hours
With : 20-nodes 53 min

As expected the performance improves linearly () with the number of nodes.2.07x speed-up

Sample Variant Indexing

http://docs.opencb.org/display/opencga/Indexing+Genomic+Variants
http://docs.opencb.org/display/cellbase/CellBase+Home

This operation plays a crucial role when querying by sample genotype. This is also one of the most
complex and intensive operation since we index here all the genotypes loaded, all the variants for each
sample is indexed, in this PoC we have about . We run 20 billion variants across the 4,700 samples
this few times with 10 nodes and 20 nodes. The observed performance was:

With : 10-nodes 4:53 hours
With : 20-nodes 2:37 min

As expected the performance improves linearly () with the number of nodes. this 1.86x speed-up Note:
operation is incremental so if we load new samples we only need to index variants from these samples,
the runtime above was obtained indexing all sample genotypes in one single execution.

Query Benchmark

To study the query performance we tried different configurations:

Variants table compression - Either GZ (2.9TB) or SNAPPY (4,7TB)
Bucket cache size per node - Using the 1TB premium disk to improve writes to extend the
bucket size
Cache compression - HBASE-11331
Cache warmup - Custom MR job to read the whole hbase table and warm up the caches

Queries

filter=PASS,region,sample(1, OR)
filter=PASS,region,sample(2, OR)
filter=PASS,region,sample(3, OR)
filter=PASS,region,sample(4, OR)
filter=PASS,region,sample(5, OR)

filter=PASS,region,sample(1, AND)
filter=PASS,region,sample(2, AND)
filter=PASS,region,sample(3, AND)
filter=PASS,region,sample(4, AND)
filter=PASS,region,sample(5, AND)

filter=PASS,region=15,sample(3, AND)
filter=PASS,region=15,sample(3, OR)

filter=PASS,region,ct=(lof,missense_variant),sample(1, OR)
filter=PASS,region,ct=(lof,missense_variant),sample(2, OR)
filter=PASS,region,ct=(lof,missense_variant),sample(3, OR)
filter=PASS,region,ct=(lof,missense_variant),sample(4, OR)
filter=PASS,region,ct=(lof,missense_variant),sample(5, OR)

filter=PASS,region,ct(6),sample(1, OR)
filter=PASS,region,ct(6),sample(2, OR)
filter=PASS,region,ct(6),sample(3, OR)
filter=PASS,region,ct(6),sample(4, OR)
filter=PASS,region,ct(6),sample(5, OR)

filter=PASS,region,ct=(lof,missense_variant),biotype=protein_coding,sample(1, OR)
filter=PASS,region,ct(9),biotype=protein_coding,sample(1, OR)

Scenarios

ID Variants Table
Compression

Bucket Cache
size (GB/node)

Cache
compression

Cache
warmup

Average
Query
Time (s)

Speed-
up

1 GZ 45 No No 5.487 NA

2 GZ 45 No Yes 5.126 1.1x

3 GZ 300 No Yes 3.628 1.5x

4 GZ 300 Yes Yes 2.115 2.6x

5 SNAPPY 300 Yes No 2.412 2.3x

6 SNAPPY 300 Yes Yes 1.816 3.0x

7 SNAPPY 45 No No 3.750 1.5x

Results

AZURE Native on-prem

https://issues.apache.org/jira/browse/HBASE-11331

HDI3 HDI4 HDP2.6

GZ SNAPPY SNAPPY SNAPPY

45GB 300GB 300GB 45GB 500GB 10GB

Uncompressed Uncomp. Comp. Compressed Comp. Compressed Uncomp.

Cold Warm Warm Warm Cold Warm Cold Cold Warm RD37 RD38 CG38

1 2 3 4 5 6 7 8 9 10 11 12

filter=PASS,region,ct(6),
sample(1, OR)

5.172 5.729 4.263 1.792 2.950 1.534 3.561 4.446 1.495 0.829 2.729 1.246

filter=PASS,region,ct(6),
sample(2, OR)

6.488 5.905 4.035 2.116 3.256 2.007 3.926 5.338 2.081 0.84 1.644 2.27

filter=PASS,region,ct(6),
sample(3, OR)

7.657 5.366 4.383 2.715 3.299 2.725 4.355 6.427 2.285 1.947 2.205 1.99

filter=PASS,region,ct(6),
sample(4, OR)

9.039 6.402 5.098 2.124 3.562 2.338 5.263 5.108 2.522 0.996 3.01 1.88

filter=PASS,region,ct(6),
sample(5, OR)

8.688 8.546 4.880 3.161 3.432 2.455 5.778 7.006 3.067 1.628 1.961 1.962

filter=PASS,region,ct(9),
biotype=protein_coding,
sample(1, OR)

4.138 6.090 2.891 1.837 2.544 2.605 3.906 NA* NA* 1.43 1.345 1.345

filter=PASS,region,ct=
(lof,missense_variant),
biotype=protein_coding,
sample(1, OR)

3.908 5.060 3.284 1.795 1.804 1.588 3.619 3.758 1.714 0.802 1.549 1.443

filter=PASS,region,ct=
(lof,missense_variant),
sample(1, OR)

5.905 3.856 3.394 2.304 2.737 1.422 3.283 4.136 1.913 0.85 1.78 1.461

filter=PASS,region,ct=
(lof,missense_variant),
sample(2, OR)

7.762 5.686 3.996 2.561 3.348 2.017 3.912 4.209 2.375 1.765 2.533 4.981

filter=PASS,region,ct=
(lof,missense_variant),
sample(3, OR)

7.069 6.668 4.145 2.121 3.588 2.173 4.568 5.724 2.539 1.147 2.019 1.959

filter=PASS,region,ct=
(lof,missense_variant),
sample(4, OR)

6.918 6.488 4.908 3.000 3.867 2.622 5.013 5.987 3.065 1.229 2.01 1.754

filter=PASS,region,ct=
(lof,missense_variant),
sample(5, OR)

8.917 9.043 4.799 2.202 3.251 2.569 5.996 6.64 2.981 1.653 2.732 2.115

filter=PASS,region,
sample(1, AND)

3.678 2.882 2.563 1.697 1.405 1.262 1.789 2.589 1.695 0.808 2.127 1.533

filter=PASS,region,
sample(1, OR)

3.381 3.052 2.946 1.959 1.265 1.312 1.740 2.192 1.667 0.832 2.595 1.915

filter=PASS,region,
sample(2, AND)

4.220 3.682 2.852 1.864 1.785 1.443 2.665 3.088 1.980 1.046 3.161 1.802

filter=PASS,region,
sample(2, OR)

3.997 3.657 2.401 2.170 1.532 1.327 2.255 2.963 1.726 0.925 1.827 1.529

filter=PASS,region,
sample(3, AND)

5.560 4.418 3.287 2.461 2.418 1.810 3.307 3.888 2.098 1.154 2.219 2.388

filter=PASS,region,
sample(3, OR)

4.430 4.218 3.401 1.914 1.485 1.481 3.148 3.339 2.068 0.923 2.251 1.945

filter=PASS,region,
sample(4, AND)

4.987 5.235 4.918 2.555 2.041 1.973 4.122 4.805 2.538 1.37 3.193 2.145

filter=PASS,region,
sample(4, OR)

4.347 4.816 3.229 2.256 1.736 1.823 3.216 3.989 2.238 1.062 1.947 1.661

filter=PASS,region,
sample(5, AND)

6.695 5.556 4.779 2.783 2.996 2.452 4.835 5.793 3.087 1.714 2.779 2.553

filter=PASS,region,
sample(5, OR)

5.067 5.395 3.910 2.518 2.217 1.789 4.358 4.495 2.639 1.599 2.053 1.781

filter=PASS,region=15,
sample(3, AND)

1.894 2.714 1.539 0.463 0.841 0.460 3.070 4.768 1.535 0.904 1.716 1.616

filter=PASS,region=15,
sample(3, OR)

1.771 2.550 1.163 0.384 0.521 0.408 2.311 4.482 1.701 0.865 1.553 1.454

Average
5.487 5.126 3.628 2.115 2.412 1.816 3.750 4.573 2.218 1.180 2.206 1.947

Speed-up
1.0 1.1 1.5 2.6 2.3 3.0 1.5 1.2 2.5 4.7 2.5 2.8

Average – no region 15
5.819 4.879 3.835 2.268 2.569 1.942 3.846 4.568 2.275 1.207 2.258 1.984

Speed-up
1.0 1.2 1.5 2.6 2.3 3.0 1.5 1.3 2.6 4.8 2.6 2.9

* Apache Phoenix not working in H

GWAS

We defined two cohorts of 100 samples each and run a GWAS analysis over the 208 million variants.
The performance observed was very similar to Cohort Stats Calculation. About 2 hours with 10 nodes
and about 1 hour with 20 nodes.

	Microsoft Azure HDInsight

