
AnnotationSets 1.4.0
Clinical data is supported in and in a field called . Any of these entities will be able to perform the File, Sample, Cohort, Individual Family annotationSets
same operations described below apart from their own particular features.

In this document, we will be referring to and (the field names used in OpenCGA to store any clinical data or any other user-annotationSets annotations
defined free data model).

Clinical data ingestion

Create or remove a whole

In order to add new clinical information to one entity, the user will need to call to the main web service of the entity (/update files/{file}/update, samples/
, etc.). These web services accept a list of using the format described above. By default, any time the user sends a list of {sample}/update annotationSets a

 without adding any other parameter, those containing the clinical information will be added to the already existing nnotationSets annotationSets annotation
 the entity might contain (if any). However, this behaviour can be altered by changing the value of the query parameter. This Sets annotationSetsAction

parameter accepts 3 possible action values:

ADD: This is the default behavior, even if the query parameter is not sent. Any sent through the main body of the POST operation annotationSets
will be added to the already existing ones (if any).
SET: Replace the current existing (if any) of the entity being updated by the ones sent through the main body of the POST annotationSets
operation.
REMOVE: Remove the list of sent through the main body of the POST operation if they already exist in the entity being updated. annotationSets
In this case, the only field that is necessary and therefore taken into account, will be the annotationSet . id

Updating some values of already stored clinical data

In order to update only a few values () of an already stored users will need to call to a new web service annotations annotationSet, .../annotationSets/
present for the different 5 supported entities. This web service accepts a map of key-values that will generally contain {annotationSetId}/annotations/update

the name of the annotation being updated and the new value to be stored. At the moment, there are 5 different actions supported by the query action
parameter:

ADD: Default behavior if the query parameter is not provided. Adds the new value to the annotation. If it already existed, the value will be
replaced.

SET: This action might be really harmful. It will set the provided in the body of the POST operation and will remove any other annotations anno
 the might have had stored.tations annotationSet

REPLACE: Replace the value of an already existing Similar to the ADD action but, in this case, If the annotation did not exist, it will annotation.
not set the new value !!
REMOVE: Empty the values of some stored . To perform this action, the map of the body will need to contain the key 'remove' and a annotations
comma separated list containing the annotations to be removed. Example: {"remove": "member.address,member.age"}
RESET: Reset the values of the defined to their default values defined in the of the . To perform this actiont, he annotations variables variableSet
map of the body will need to contain the key 'reset' and a comma separated list containing the annotations to be reset. Example: {"reset":
"member.address"}

Querying by clinical data

The 5 supported entities mentioned above have their own web service. Among all the different unique fields those entities can be queried for, there /search
is an additional field to perform queries over the clinical data stored. There are mainly three different kinds of filtering that can be performed:annotation

Filter by : Users might want to filter all the entities that have been (have values) using one user-defined . * variableSet annotated variableSet
Follow section defined below to see the supported operations.Filtering by variableSet and annotationSet
Filter by (have values) for one particular Follow : Users might want to filter all the entities that have been annotatedannotationSet annotationSet. *

 section defined below to see the supported operations.Filtering by variableSet and annotationSet
Filter by : Users are also allowed to filter by any of the clinical data values. Example: annotation

Let's imagine that for the above described data model, we want to look for any whose gender has been defined as Individual Individual
FEMALE, older than 30 and living in London. To do this query, we would need to write something like:

1. annotation: individual_private_details:age>30;individual_private_details:gender=FEMALE;
individual_private_details:address.city=London
or
2. annotation: age>30;gender=FEMALE;address.city=London

The first option to search, though longer, should never fail as long as there exist a in the containing the that are variableSet study variables
being queried. Basically, we are telling OpenCGA to look for any matching those values but, at the same time, we are giving Individual
OpenCGA information of where the the user want to look for have been defined (the that defines those). A variables variableSet variables
general way of seeing this query would have the following format: , [[{annotationSetId}@]{ }:]{ { }variableSetId variable}{operator} value
where operator can be any of == or for any data type, plus for numeric variables.=, != >, >=, <, <=
However, OpenCGA also allows performing the query using the shorter way as seen in the second line in which users can omit specifying
the where the were defined. In this case, OpenCGA will look for all the that might have defined these variableSet variables VariableSets var

 and, as long as those variables have only been defined in one , the query will be performed. Otherwise, OpenCGA will iables VariableSet
raise an error because it will not know the real scope of the query.

http://docs.opencb.org/pages/viewpage.action?pageId=36700182#AnnotationSets1.4.0-variableSetQueries
http://docs.opencb.org/pages/viewpage.action?pageId=36700182#AnnotationSets1.4.0-variableSetQueries

Filtering by and variableSet annotationSet

Filtering by any of these fields can be a bit tricky depending on the amount of stored for a particular entry. This can be better annotationSets
explained with the following example. Let's say we have only 4 stored in OpenCGA, and they contain the following Individuals annotationSets,
each A, B, C and D corresponding to different A, B, C and D respectively.variableSets

Individual 1 : { A, B }

Individual 2 : { B }

Individual 3: { C, D }

Individual 4: { }

In this case, the operators and are also supported, though they might give unexpected results to the user. For this reason, we have =, == !=
also added and operators to support any possible query operation. An example containing the results that would be obtained is === !==
shown in the table below:

Operator Value
looked
for

Individuals
returned

Explanation

=, == B 1, 2 Fetch all the individuals containing or BannotationSet variableSet

=== B 2 Fetch all the individuals that only contains or BannotationSet variableSet

!= B 1, 3, 4 Fetch all the individuals that doesn't only contain or B. Individuals containing B annotationSet variableSet
plus any other or will be returned.annotationSet variableSet

!== B 3, 4 Fetch all the individuals that have never been annotated using or B.annotationSet variableSet

Project the fields to returnannotation

Annotations, as well as any other field from the data models can be included or excluded from the final JSON the user will get. However, because annotatio
 contain custom data models that are not completely under OpenCGA's control, a set of reserved prefixes have been defined as explained below:ns

Include/exclude specific : If we need to project some specific annotations only, users will need to add the prefixes "annotations annotationSets.
" or " " to the field to be projected. Example: If after running a query we only want to include the full_name and the hpo annotations annotation

variables defined in the Individual VariableSet, users will need to write

 include: annotation.full_name,annotation.hpo

 or

 include: annotationSets.annotation.full_name,annotationSets.annotation.hpo

Include/exclude specific : Let's imagine that we have several defined such as in the examples of Individual1 and annotationSets annotationSets
Individual3. If we only want to project the annotations of one specific , users will need to use the prefixes " " or "annotationSet annotationSets.id ann

" to the id to be projected. Example: To include only the from the B and D, we will need to otationSet annotationSet annotations annotationSets
write:

 include: annotationSets.id.B,annotationSets.id.D

 or

 include: annotationSet.B,annotationSet.D

Include/exclude specific : Let's say that for some entries the user have created several using the same variableSets annotationSets variableSet
and the user wants to fetch only those instead of getting other . To do so, users will need to use the prefixes "annotationSets.annotationSets
variableSetId" or "variableSet". Example: Let's imagine that we have another Individual that contains 2 (a and b) using the annotationSets
template defined in the X and another (c) annotating the Y. If the user is only interested in getting the variableSet annotationSet variableSet
annotationSets "a" and "b", we will need to write:

 include: annotationSets.variableSetId.X

 or

 include: variableSet.B

Flatten annotations

Additionally, the different and / web services have a new query parameter called . That field is a simple boolean to indicate /info search flattenAnnotations
whether the should be returned flattened or not. Let's imagine we have the following annotationSet:annotations

{
 "id": "annotation_set_id",
 "variableSetId": "individual_private_details",
 "annotations": {
 "full_name": "John Smith",
 "age": 60,
 "gender": "MALE",
 "address": {
 "city": "United States",
 "zip": "99501"
 }
 }
}

The same result with set to true would be:flattenAnnotations

{
 "id": "annotation_set_id",
 "variableSetId": "individual_private_details",
 "annotations": {
 "full_name": "John Smith",
 "age": 60,
 "gender": "MALE",
 "address.city": "United States",
 "address.zip": "99501"
 }
}

GroupBy

We can put something like the following the 'fields' field: annotation:29:pedigreeAnnotation:Population to group by Population

	AnnotationSets 1.4.0

